-
Notifications
You must be signed in to change notification settings - Fork 211
/
plot_gg.R
758 lines (751 loc) · 33.9 KB
/
plot_gg.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
#'@title Transform ggplot2 objects into 3D
#'
#'@description Plots a ggplot2 object in 3D by mapping the color or fill aesthetic to elevation.
#'
#'Currently, this function does not transform lines mapped to color into 3D.
#'
#'If there are multiple legends/guides due to multiple aesthetics being mapped (e.g. color and shape),
#'the package author recommends that the user pass the order of the guides manually using the ggplot2 function "guides()`.
#'Otherwise, the order may change when processing the ggplot2 object and result in a mismatch between the 3D mapping
#'and the underlying plot.
#'
#'Using the shape aesthetic with more than three groups is not recommended, unless the user passes in
#'custom, solid shapes. By default in ggplot2, only the first three shapes are solid, which is a requirement to be projected
#'into 3D.
#'
#'@param ggobj ggplot object to projected into 3D.
#'@param ggobj_height Default `NULL`. A ggplot object that can be used to specify the 3D extrusion separately from the
#'`ggobj`.
#'@param width Default `3`. Width of ggplot, in `units`.
#'@param height Default `3`. Height of ggplot, in `units`.
#'@param height_aes Default `NULL`. Whether the `fill` or `color` aesthetic should be used for height values,
#'which the user can specify by passing either `fill` or `color` to this argument.
#'Automatically detected. If both `fill` and `color` aesthetics are present, then `fill` is default.
#'@param invert Default `FALSE`. If `TRUE`, the height mapping is inverted.
#'@param shadow_intensity Default `0.5`. The intensity of the calculated shadows.
#'@param units Default `in`. One of c("in", "cm", "mm").
#'@param scale Default `150`. Multiplier for vertical scaling: a higher number increases the height
#'of the 3D transformation.
#'@param pointcontract Default `0.7`. This multiplies the size of the points and shrinks
#'them around their center in the 3D surface mapping. Decrease this to reduce color bleed on edges, and set to
#'`1` to turn off entirely. Note: If `size` is passed as an aesthetic to the same geom
#'that is being mapped to elevation, this scaling will not be applied. If `alpha` varies on the variable
#'being mapped, you may want to set this to `1`, since the points now have a non-zero width stroke outline (however,
#'mapping `alpha` in the same variable you are projecting to height is probably not a good choice. as the `alpha`
#'variable is ignored when performing the 3D projection).
#'@param offset_edges Default `FALSE`. If `TRUE`, inserts a small amount of space between polygons for "geom_sf", "geom_tile", "geom_hex", and "geom_polygon" layers.
#'If you pass in a number, the space between polygons will be a line of that width. You can also specify a number to control the thickness of the offset.
#'Note: this feature may end up removing thin polygons from the plot entirely--use with care.
#'@param flat_plot_render Default `FALSE`. Whether to render a flat version of the ggplot above (or alongside) the 3D version.
#'@param flat_distance Default `"auto"`. Distance to render the flat version of the plot from the 3D version.
#'@param flat_transparent_bg Default `FALSE`. Whether to set the background of the flat version of the ggplot to transparent.
#'@param flat_direction Default `"-z"`. Direction to render the flat copy of the plot, if `flat_plot_render = TRUE`.
#'Other options `c("z", "x", "-x", "y", "-y")`.
#'@param shadow Default `TRUE`. If `FALSE`, no shadow is rendered.
#'@param shadowdepth Default `auto`, which sets it to `soliddepth - soliddepth/10`. Depth of the shadow layer.
#'@param shadow_darkness Default `0.5`. Darkness of the shadow, if `shadowcolor = "auto"`.
#'@param shadowcolor Default `auto`. Color of the shadow, automatically computed as `shadow_darkness`
#'the luminance of the `background` color in the CIELab colorspace if not specified.
#'@param background Default `"white"`. Background color.
#'@param preview Default `FALSE`. If `TRUE`, the raytraced 2D ggplot will be displayed on the current device.
#'@param raytrace Default `FALSE`. Whether to add a raytraced layer.
#'@param sunangle Default `315` (NW). If raytracing, the angle (in degrees) around the matrix from which the light originates.
#'@param anglebreaks Default `seq(30,40,0.1)`. The azimuth angle(s), in degrees, as measured from the horizon from which the light originates.
#'@param lambert Default `TRUE`. If raytracing, changes the intensity of the light at each point based proportional to the
#'dot product of the ray direction and the surface normal at that point. Zeros out all values directed away from
#'the ray.
#'@param triangulate Default `FALSE`. Reduce the size of the 3D model by triangulating the height map.
#'Set this to `TRUE` if generating the model is slow, or moving it is choppy. Will also reduce the size
#'of 3D models saved to disk.
#'@param max_error Default `0.001`. Maximum allowable error when triangulating the height map,
#'when `triangulate = TRUE`. Increase this if you encounter problems with 3D performance, want
#'to decrease render time with `render_highquality()`, or need
#'to save a smaller 3D OBJ file to disk with `save_obj()`,
#'@param max_tri Default `0`, which turns this setting off and uses `max_error`.
#'Maximum number of triangles allowed with triangulating the
#'height map, when `triangulate = TRUE`. Increase this if you encounter problems with 3D performance, want
#'to decrease render time with `render_highquality()`, or need
#'to save a smaller 3D OBJ file to disk with `save_obj()`,
#'@param verbose Default `TRUE`, if `interactive()`. Prints information about the mesh triangulation
#'if `triangulate = TRUE`.
#'@param emboss_text Default `0`, max `1`. Amount to emboss the text, where `1` is the tallest feature in the scene.
#'@param emboss_grid Default `0`, max `1`. Amount to emboss the grid lines, where `1` is the tallest feature in the scene.
#'By default, the minor grid lines will be half the size of the major lines. Pass a length-2 vector to specify them seperately (second value
#'is the minor grid height).
#'@param reduce_size Default `NULL`. A number between `0` and `1` that specifies how much to reduce the resolution of the plot, for faster plotting. By
#'default, this just decreases the size of height map, not the image. If you wish the image to be reduced in resolution as well, pass a numeric vector of size 2.
#'@param multicore Default `FALSE`. If raytracing and `TRUE`, multiple cores will be used to compute the shadow matrix. By default, this uses all cores available, unless the user has
#'set `options("cores")` in which the multicore option will only use that many cores.
#'@param save_height_matrix Default `FALSE`. If `TRUE`, the function will return the height matrix used for the ggplot.
#'@param save_shadow_matrix Default `FALSE`. If `TRUE`, the function will return the shadow matrix for use in future updates via the `shadow_cache` argument passed to `ray_shade`.
#'@param saved_shadow_matrix Default `NULL`. A cached shadow matrix (saved by the a previous invocation of `plot_gg(..., save_shadow_matrix=TRUE)` to use instead of raytracing a shadow map each time.
#'@param ... Additional arguments to be passed to `plot_3d()`.
#'@return Opens a 3D plot in rgl.
#'@export
#'@examples
#'library(ggplot2)
#'library(viridis)
#'\dontshow{
#'options("cores"=2)
#'}
#'
#'ggdiamonds = ggplot(diamonds, aes(x, depth)) +
#' stat_density_2d(aes(fill = after_stat(nlevel)), geom = "polygon",
#' n = 200, bins = 50,contour = TRUE) +
#' facet_wrap(clarity~.) +
#' scale_fill_viridis_c(option = "A")
#'if(run_documentation()) {
#'plot_gg(ggdiamonds,multicore = TRUE,width=5,height=5,scale=250,windowsize=c(1400,866),
#' zoom = 0.55, phi = 30)
#'render_snapshot()
#'}
#'#Change the camera angle and take a snapshot:
#'if(run_documentation()) {
#'render_camera(zoom=0.5,theta=-30,phi=30)
#'render_snapshot()
#'}
#'
#'#Contours and other lines will automatically be ignored. Here is the volcano dataset:
#'ggvolcano = volcano %>%
#' reshape2::melt() %>%
#' ggplot() +
#' geom_tile(aes(x=Var1,y=Var2,fill=value)) +
#' geom_contour(aes(x=Var1,y=Var2,z=value),color="black") +
#' scale_x_continuous("X",expand = c(0,0)) +
#' scale_y_continuous("Y",expand = c(0,0)) +
#' scale_fill_gradientn("Z",colours = terrain.colors(10)) +
#' coord_fixed() +
#' theme(legend.position = "none")
#'ggvolcano
#'
#'if(run_documentation()) {
#'plot_gg(ggvolcano, multicore = TRUE, raytrace = TRUE, width = 7, height = 4,
#' scale = 300, windowsize = c(1400, 866), zoom = 0.6, phi = 30, theta = 30)
#'render_snapshot()
#'}
#'
#'if(run_documentation()) {
#'#You can specify the color and height separately using the `ggobj_height()` argument.
#'ggvolcano_surface = volcano %>%
#'reshape2::melt() %>%
#' ggplot() +
#' geom_contour(aes(x=Var1,y=Var2,z=value),color="black") +
#' geom_contour_filled(aes(x=Var1,y=Var2,z=value))+
#' scale_x_continuous("X",expand = c(0,0)) +
#' scale_y_continuous("Y",expand = c(0,0)) +
#' coord_fixed() +
#' theme(legend.position = "none")
#'
#'plot_gg(ggvolcano_surface, ggobj_height = ggvolcano,
#' multicore = TRUE, raytrace = TRUE, width = 7, height = 4,
#' scale = 300, windowsize = c(1400, 866), zoom = 0.6, phi = 30, theta = 30)
#'render_snapshot()
#'}
#'#Here, we will create a 3D plot of the mtcars dataset. This automatically detects
#'#that the user used the `color` aesthetic instead of the `fill`.
#'mtplot = ggplot(mtcars) +
#' geom_point(aes(x=mpg,y=disp,color=cyl)) +
#' scale_color_continuous(limits=c(0,8))
#'
#'#Preview how the plot will look by setting `preview = TRUE`: We also adjust the angle of the light.
#'if(run_documentation()) {
#'plot_gg(mtplot, width=3.5, sunangle=225, preview = TRUE)
#'}
#'if(run_documentation()) {
#'plot_gg(mtplot, width=3.5, multicore = TRUE, windowsize = c(1400,866), sunangle=225,
#' zoom = 0.60, phi = 30, theta = 45)
#'render_snapshot()
#'}
#'#Now let's plot a density plot in 3D.
#'mtplot_density = ggplot(mtcars) +
#' stat_density_2d(aes(x=mpg,y=disp, fill=after_stat(!!str2lang("density"))),
#' geom = "raster", contour = FALSE) +
#' scale_x_continuous(expand=c(0,0)) +
#' scale_y_continuous(expand=c(0,0)) +
#' scale_fill_gradient(low="pink", high="red")
#'mtplot_density
#'
#'if(run_documentation()) {
#'plot_gg(mtplot_density, width = 4,zoom = 0.60, theta = -45, phi = 30,
#' windowsize = c(1400,866))
#'render_snapshot()
#'}
#'#This also works facetted.
#'mtplot_density_facet = mtplot_density + facet_wrap(~cyl)
#'
#'#Preview this plot in 2D:
#'if(run_documentation()) {
#'plot_gg(mtplot_density_facet, preview = TRUE)
#'}
#'if(run_documentation()) {
#'plot_gg(mtplot_density_facet, windowsize=c(1400,866),
#' zoom = 0.55, theta = -10, phi = 25)
#'render_snapshot()
#'}
#'#That is a little cramped. Specifying a larger width will improve the readability of this plot.
#'if(run_documentation()) {
#'plot_gg(mtplot_density_facet, width = 6, preview = TRUE)
#'}
#'
#'#That's better. Let's plot it in 3D, and increase the scale.
#'if(run_documentation()) {
#'plot_gg(mtplot_density_facet, width = 6, windowsize=c(1400,866),
#' zoom = 0.55, theta = -10, phi = 25, scale=300)
#'render_snapshot()
#'}
#'
#'#We can also render a flat version of the plot alongside (or above/below) the 3D version.
#'if(run_documentation()) {
#'plot_gg(mtplot_density_facet, width = 6, windowsize=c(1400,866),
#' zoom = 0.65, theta = -25, phi = 35, scale=300, flat_plot_render=TRUE,
#' flat_direction = "x")
#'render_snapshot()
#'}
plot_gg = function(ggobj, ggobj_height = NULL, width = 3, height = 3,
height_aes = NULL, invert = FALSE, shadow_intensity = 0.5,
units = c("in", "cm", "mm"), scale=150, pointcontract = 0.7, offset_edges = FALSE,
flat_plot_render = FALSE, flat_distance = "auto",
flat_transparent_bg = FALSE, flat_direction = "-z",
shadow = TRUE, shadowdepth = "auto", shadowcolor = "auto", shadow_darkness = 0.5,
background = "white",
preview = FALSE, raytrace = TRUE, sunangle = 315, anglebreaks = seq(30,40,0.1),
multicore = FALSE, lambert=TRUE, triangulate = TRUE,
max_error = 0.001, max_tri = 0, verbose= FALSE, emboss_text = 0, emboss_grid = 0,
reduce_size = NULL, save_height_matrix = FALSE,
save_shadow_matrix = FALSE, saved_shadow_matrix=NULL, ...) {
if(!(length(find.package("ggplot2", quiet = TRUE)) > 0)) {
stop("Must have ggplot2 installed to use plot_gg()")
}
heightmaptemp = tempfile(fileext = ".png")
colormaptemp = tempfile(fileext = ".png")
if(is.null(ggobj_height)) {
if(methods::is(ggobj,"list") && length(ggobj) == 2) {
stopifnot(inherits(ggobj[[2]], "ggplot"))
stopifnot(inherits(ggobj[[1]], "ggplot"))
ggplotobj2 = unserialize(serialize(ggobj[[2]], NULL))
color_gg = unserialize(serialize(ggobj[[1]], NULL))
ggplot2::ggsave(colormaptemp,ggobj[[1]],width = width,height = height,dpi=300)
} else {
stopifnot(inherits(ggobj, "ggplot"))
ggplotobj2 = unserialize(serialize(ggobj, NULL))
color_gg = unserialize(serialize(ggobj, NULL))
ggplot2::ggsave(colormaptemp,ggplotobj2,width = width,height = height,dpi=300)
}
} else {
stopifnot(inherits(ggobj, "ggplot"))
stopifnot(inherits(ggobj_height, "ggplot"))
ggplotobj2 = unserialize(serialize(ggobj_height, NULL))
color_gg = unserialize(serialize(ggobj, NULL))
ggplot2::ggsave(colormaptemp,color_gg,width = width,height = height,dpi=300)
}
set_to_white = function(grob) {
if(!is.null(grob[["grobs"]])) {
for(j in seq_len(length(grob$grobs))) {
grob$grobs[[j]] = set_to_white(grob$grobs[[j]])
}
} else if (!is.null(grob[["children"]])) {
for(j in seq_len(length(grob$children))) {
grob$children[[j]] = set_to_white(grob$children[[j]])
}
} else if (length(grob) == 1 && inherits(grob[[1]],"gTree")) {
grob[[1]] = set_to_white(grob[[1]])
} else if(!(length(grep("geom", x = grob$name)) > 0) && !(length(grep("pathgrob", x = grob$name)) > 0)) {
grob$gp$col = "white"
grob$gp$alpha =0
grob$gp$fill = "white"
grob$gp$lwd = 0
class(grob$gp) = "gpar"
}
return(grob)
}
emboss_gg_text = function(grob, emboss) {
if(!is.null(grob[["grobs"]])) {
for(j in seq_len(length(grob$grobs))) {
grob$grobs[[j]] = emboss_gg_text(grob$grobs[[j]], emboss)
}
} else if (!is.null(grob[["children"]])) {
for(j in seq_len(length(grob$children))) {
grob$children[[j]] = emboss_gg_text(grob$children[[j]], emboss)
}
} else if(all(inherits(grob, c("text","grob"), which=TRUE)>0)) {
emboss = ceiling(max(c(min(c(emboss,1)),0))*100)
colval = ifelse(emboss != 100, sprintf("grey%d",emboss), "white")
grob$gp$col = colval
grob$gp$alpha = 1
grob$gp$fill = colval
class(grob$gp) = "gpar"
}
return(grob)
}
emboss_gg_grid = function(grob, emboss) {
if(!is.null(grob[["grobs"]])) {
for(j in seq_len(length(grob$grobs))) {
grob$grobs[[j]] = emboss_gg_grid(grob$grobs[[j]], emboss)
}
} else if (!is.null(grob[["children"]])) {
for(j in seq_len(length(grob$children))) {
grob$children[[j]] = emboss_gg_grid(grob$children[[j]], emboss)
}
} else if((all(inherits(grob, c("polyline","grob"), which=TRUE)>0) &&
length(grep("panel.grid", grob$name)) > 0) ||
(all(inherits(grob, c("lines","grob"), which=TRUE)>0) &&
(length(grep("GRID.lines", grob$name)) > 0)) ) {
if(length(grep("GRID.lines", grob$name)) > 0) {
emboss = emboss[1]
}
if(length(grep("panel.grid.major", grob$name)) > 0) {
emboss = emboss[1]
}
if(length(grep("panel.grid.minor", grob$name)) > 0) {
emboss = emboss[2]
}
emboss = ceiling(max(c(min(c(emboss,1)),0))*100)
colval = ifelse(emboss != 100, sprintf("grey%d",emboss), "white")
grob$gp$col = colval
grob$gp$alpha = 1
grob$gp$fill = colval
grob$gp$lwd = 1
class(grob$gp) = "gpar"
}
return(grob)
}
#Determine if auto fill or color aes to be mapped to 3D
isfill = FALSE
iscolor = FALSE
if(is.null(height_aes)) {
for(i in seq_len(length(ggplotobj2$layers))) {
if("fill" %in% names(ggplotobj2$layers[[i]]$mapping)) {
isfill = TRUE
}
if(any(c("color","colour") %in% names(ggplotobj2$layers[[i]]$mapping))) {
iscolor = TRUE
}
}
if(!iscolor && !isfill) {
if("fill" %in% names(ggplotobj2$mapping)) {
isfill = TRUE
}
if(any(c("color","colour") %in% names(ggplotobj2$mapping))) {
iscolor = TRUE
}
}
if(isfill && !iscolor) {
height_aes = "fill"
} else if (!isfill && iscolor) {
height_aes = "colour"
} else if (isfill && iscolor) {
height_aes = "fill"
} else {
height_aes = "fill"
}
}
if(height_aes == "color") {
height_aes = "colour"
}
if(is.numeric(offset_edges)) {
polygon_offset_value = offset_edges
offset_edges = TRUE
} else {
polygon_offset_value = 0.5
}
polygon_offset_geoms = c("GeomPolygon","GeomSf", "GeomHex", "GeomTile")
other_height_type = ifelse(height_aes == "colour", "fill", "colour")
black_white_pal = function(x) {
grDevices::colorRampPalette(c("white", "black"))(255)[x * 254 + 1]
}
white_white_pal = function(x) {
grDevices::colorRampPalette(c("white", "white"))(255)[x * 254 + 1]
}
ifelsefxn = function(entry) {
if(!is.null(entry)) {
return(entry)
}
}
#Shift all continuous palettes of height_aes to black/white, and set all discrete key colors to white.
if(ggplotobj2$scales$n() != 0) {
anyfound = FALSE
#Check to see if same guide being used for both color and fill aesthetics
if(ggplotobj2$scales$has_scale("colour") && ggplotobj2$scales$has_scale("fill")) {
fillscale = ggplotobj2$scales$get_scales("fill")
colorscale = ggplotobj2$scales$get_scales("colour")
same_limits = FALSE
same_breaks = FALSE
same_labels = FALSE
same_calls = FALSE
if((!is.null(fillscale$limits) && !is.null(colorscale$limits))) {
if(fillscale$limits == colorscale$limits) {
same_limits = TRUE
}
} else if (is.null(fillscale$limits) && is.null(colorscale$limits)) {
same_limits = TRUE
}
if((!is.null(fillscale$breaks) && !is.null(colorscale$breaks))) {
if(all(fillscale$breaks == colorscale$breaks)) {
same_breaks = TRUE
}
} else if (is.null(fillscale$breaks) && is.null(colorscale$breaks)) {
same_breaks = TRUE
}
if(!inherits(fillscale$labels, "waiver") && !inherits(colorscale$labels, "waiver")) {
if(all(fillscale$labels == colorscale$labels)) {
same_labels = TRUE
}
} else if (inherits(fillscale$labels, "waiver") && inherits(colorscale$labels, "waiver")) {
same_labels = TRUE
}
if(fillscale$call == colorscale$call) {
same_calls = TRUE
}
if(same_limits && same_breaks && same_labels && same_calls) {
if(height_aes == "fill") {
ggplotobj2 = ggplotobj2 + ggplot2::guides(color = "none")
} else {
ggplotobj2 = ggplotobj2 + ggplot2::guides(fill = "none")
}
}
}
#Now check for scales and change to the b/w palette, but preserve guide traits.
for(i in seq_len(ggplotobj2$scales$n())) {
if(height_aes %in% ggplotobj2$scales$scales[[i]]$aesthetics) {
ggplotobj2$scales$scales[[i]]$palette = black_white_pal
ggplotobj2$scales$scales[[i]]$na.value = "white"
has_guide = !any(inherits(ggplotobj2$scales$scales[[i]]$guide,"guide"))
if(any(inherits(ggplotobj2$scales$scales[[i]]$guide,"logical"))) {
has_guide = ggplotobj2$scales$scales[[i]]$guide
}
if(has_guide) {
if(height_aes == "fill") {
if(is.null(ggplotobj2$guides$fill)) {
ggplotobj2 = ggplotobj2 + ggplot2::guides(fill = ggplot2::guide_colourbar(ticks = FALSE,nbin = 1000,order=i))
} else {
if(any(ggplotobj2$guides$fill != "none")) {
copyguide = ggplotobj2$guides$fill
copyguide$frame.linewidth = 0
copyguide$ticks = FALSE
copyguide$nbin = 1000
ggplotobj2 = ggplotobj2 +
ggplot2::guides(fill = ggplot2::guide_colourbar(ticks = FALSE,nbin = 1000))
ggplotobj2$guides$fill = copyguide
}
}
for(j in seq_len(length(ggplotobj2$layers))) {
if("colour" %in% names(ggplotobj2$layers[[j]]$mapping)) {
ggplotobj2$layers[[j]]$geom$draw_key = drawkeyfunction_points
}
}
} else {
if(is.null(ggplotobj2$guides$colour)) {
ggplotobj2 = ggplotobj2 + ggplot2::guides(colour = ggplot2::guide_colourbar(ticks = FALSE,nbin = 1000,order=i))
} else {
if(any(ggplotobj2$guides$colour != "none")) {
copyguide = ggplotobj2$guides$colour
copyguide$frame.linewidth = 0
copyguide$ticks = FALSE
copyguide$nbin = 1000
ggplotobj2 = ggplotobj2 +
ggplot2::guides(colour = ggplot2::guide_colourbar(ticks = FALSE,nbin = 1000))
ggplotobj2$guides$colour = copyguide
}
}
}
}
anyfound = TRUE
} else if(other_height_type %in% ggplotobj2$scales$scales[[i]]$aesthetics) {
#change guides for other height_aes to be the all white palette
ggplotobj2$scales$scales[[i]]$palette = white_white_pal
ggplotobj2$scales$scales[[i]]$na.value = "white"
}
}
#If no scales found, just add one to the ggplot object.
if(!anyfound) {
if(height_aes == "colour") {
ggplotobj2 = ggplotobj2 +
ggplot2::scale_color_gradientn(colours = grDevices::colorRampPalette(c("white","black"))(256), na.value = "white") +
ggplot2::guides(colour = ggplot2::guide_colourbar(ticks = FALSE,nbin = 1000))
}
if(height_aes == "fill") {
ggplotobj2 = ggplotobj2 +
ggplot2::scale_fill_gradientn(colours = grDevices::colorRampPalette(c("white","black"))(256), na.value = "white") +
ggplot2::guides(fill = ggplot2::guide_colourbar(ticks = FALSE,nbin = 1000))
}
}
} else {
#If no scales found, just add one to the ggplot object.
if(ggplotobj2$scales$n() == 0) {
if(height_aes == "fill") {
ggplotobj2 = ggplotobj2 +
ggplot2::scale_fill_gradientn(colours = grDevices::colorRampPalette(c("white","black"))(256), na.value = "white") +
ggplot2::guides(fill = ggplot2::guide_colourbar(ticks = FALSE,nbin = 1000))
} else {
ggplotobj2 = ggplotobj2 +
ggplot2::scale_color_gradientn(colours = grDevices::colorRampPalette(c("white","black"))(256), na.value = "white") +
ggplot2::guides(colour = ggplot2::guide_colourbar(ticks = FALSE,nbin = 1000))
}
} else {
if(height_aes == "fill") {
ggplotobj2 = ggplotobj2 + ggplot2::scale_fill_gradientn(colours = grDevices::colorRampPalette(c("white","black"))(256), na.value = "white") +
ggplot2::guides(fill = ggplot2::guide_colourbar(ticks = FALSE,nbin = 1000))
} else {
ggplotobj2 = ggplotobj2 + ggplot2::scale_color_gradientn(colours = grDevices::colorRampPalette(c("white","black"))(256), na.value = "white") +
ggplot2::guides(colour = ggplot2::guide_colourbar(ticks = FALSE,nbin = 1000))
}
}
}
if(height_aes == "fill") {
for(layer in seq_along(1:length(ggplotobj2$layers))) {
if("colour" %in% names(ggplotobj2$layers[[layer]]$mapping) ||
0 == length(names(ggplotobj2$layers[[layer]]$mapping))) {
ggplotobj2$layers[[layer]]$aes_params$colour = "white"
}
if("fill" %in% names(ggplotobj2$layers[[layer]]$mapping)) {
ggplotobj2$layers[[layer]]$aes_params$size = NA
if(any(as.logical(inherits(ggplotobj2$layers[[layer]]$geom,polygon_offset_geoms))) && offset_edges) {
ggplotobj2$layers[[layer]]$aes_params$size = polygon_offset_value
ggplotobj2$layers[[layer]]$aes_params$colour = "white"
}
}
if("shape" %in% names(ggplotobj2$layers[[layer]]$mapping)) {
shapedata = ggplot2::layer_data(ggplotobj2)
numbershapes = length(unique(shapedata$shape))
if(numbershapes > 3) {
warning("Non-solid shapes will not be projected to 3D.")
}
ggplotobj2$layers[[layer]]$geom$draw_key = drawkeyfunction_points
}
if("size" %in% names(ggplotobj2$layers[[layer]]$mapping)) {
ggplotobj2$layers[[layer]]$geom$draw_key = drawkeyfunction_points
}
if("alpha" %in% names(ggplotobj2$layers[[layer]]$mapping)) {
ggplotobj2$layers[[layer]]$geom$draw_key = drawkeyfunction_points
for(j in seq_len(length(ggplotobj2$layers))) {
if("stroke" %in% names(ggplotobj2$layers[[j]]$geom$default_aes)) {
ggplotobj2$layers[[j]]$geom$default_aes$stroke = 0
}
}
ggplotobj2 = suppressMessages({ggplotobj2 + ggplot2::scale_alpha_continuous(range=c(1,1))})
}
if("linetype" %in% names(ggplotobj2$layers[[layer]]$mapping)) {
ggplotobj2$layers[[layer]]$geom$draw_key = drawkeyfunction_lines
}
}
} else {
for(layer in seq_len(length(ggplotobj2$layers))) {
if("fill" %in% names(ggplotobj2$layers[[layer]]$mapping) ||
0 == length(names(ggplotobj2$layers[[layer]]$mapping))) {
ggplotobj2$layers[[layer]]$aes_params$fill = "white"
}
if("shape" %in% names(ggplotobj2$layers[[layer]]$mapping)) {
shapedata = ggplot2::layer_data(ggplotobj2)
numbershapes = length(unique(shapedata$shape))
if(numbershapes > 3) {
warning("Non-solid shapes will not be projected to 3D.")
}
ggplotobj2$layers[[layer]]$geom$draw_key = drawkeyfunction_points
}
if("size" %in% names(ggplotobj2$layers[[layer]]$mapping)) {
ggplotobj2$layers[[layer]]$geom$draw_key = drawkeyfunction_points
}
if("alpha" %in% names(ggplotobj2$layers[[layer]]$mapping)) {
ggplotobj2$layers[[layer]]$geom$draw_key = drawkeyfunction_points
for(j in seq_len(length(ggplotobj2$layers))) {
if("stroke" %in% names(ggplotobj2$layers[[j]]$geom$default_aes)) {
ggplotobj2$layers[[j]]$geom$default_aes$stroke = 0
}
}
ggplotobj2 = suppressMessages({ggplotobj2 + ggplot2::scale_alpha_continuous(range=c(1,1))})
}
if("linetype" %in% names(ggplotobj2$layers[[layer]]$mapping)) {
ggplotobj2$layers[[layer]]$geom$draw_key = drawkeyfunction_lines
}
}
}
#Offset edges for polygons/Perform point contraction
if(height_aes == "fill") {
if(length(ggplotobj2$layers) > 0) {
for(i in seq_along(1:length(ggplotobj2$layers))) {
ggplotobj2$layers[[i]]$aes_params$size = NA
if(any(as.logical(inherits(ggplotobj2$layers[[layer]]$geom,polygon_offset_geoms))) && offset_edges) {
ggplotobj2$layers[[i]]$aes_params$size = polygon_offset_value
ggplotobj2$layers[[i]]$aes_params$colour = "white"
}
}
}
} else {
if(length(ggplotobj2$layers) > 0) {
for(i in seq_along(1:length(ggplotobj2$layers))) {
ggplotobj2$layers[[i]]$aes_params$fill = "white"
if(inherits(ggplotobj2$layers[[i]]$geom,"GeomContour")) {
ggplotobj2$layers[[i]]$aes_params$alpha = 0
}
}
if(pointcontract != 1) {
for(i in 1:length(ggplotobj2$layers)) {
if(!is.null(ggplotobj2$layers[[i]]$aes_params$size)) {
ggplotobj2$layers[[i]]$aes_params$size = ggplotobj2$layers[[i]]$aes_params$size * pointcontract
} else {
ggplotobj2$layers[[i]]$geom$default_aes$size = ggplotobj2$layers[[i]]$geom$default_aes$size * pointcontract
}
}
}
}
}
ggplotobj2 = set_to_white(ggplot2::ggplotGrob(ggplotobj2))
if(emboss_text > 0) {
emboss_text=1-emboss_text
ggplotobj2 = emboss_gg_text(ggplotobj2, emboss_text)
}
if(emboss_grid > 0) {
if(length(emboss_grid) == 1) {
emboss_grid = c(emboss_grid,emboss_grid/2)
}
emboss_grid=1-emboss_grid
ggplotobj2 = emboss_gg_grid(ggplotobj2, emboss_grid)
}
old_dev = grDevices::dev.cur()
grDevices::png(filename = heightmaptemp, width = width, height = height, units = "in",res=300)
grid::grid.draw(ggplotobj2)
grDevices::dev.off()
if (old_dev > 1) {
grDevices::dev.set(old_dev)
}
if(!is.null(reduce_size)) {
if(!(length(find.package("magick", quiet = TRUE)) > 0)) {
stop("magick package required to use argument reduce_size")
} else {
if(length(reduce_size) == 1 && reduce_size < 1) {
scale = scale * reduce_size
image_info = magick::image_read(heightmaptemp) %>%
magick::image_info()
magick::image_read(heightmaptemp) %>%
magick::image_resize(paste0(image_info$width * reduce_size,"x",image_info$height * reduce_size)) %>%
magick::image_write(heightmaptemp)
} else if (length(reduce_size) == 2 && all(reduce_size < 1)) {
scale = scale * reduce_size[1]
image_info = magick::image_read(heightmaptemp) %>%
magick::image_info()
magick::image_read(heightmaptemp) %>%
magick::image_resize(paste0(image_info$width * reduce_size[1],"x",image_info$height * reduce_size[1])) %>%
magick::image_write(heightmaptemp)
magick::image_read(colormaptemp) %>%
magick::image_resize(paste0(image_info$width * reduce_size[2],"x",image_info$height * reduce_size[2])) %>%
magick::image_write(colormaptemp)
}
}
}
mapcolor = png::readPNG(colormaptemp)
mapheight = png::readPNG(heightmaptemp)
if(length(dim(mapheight)) == 3) {
mapheight = mapheight[,,1]
}
if(invert) {
mapheight = 1 - mapheight
}
zscale = 1/scale
if(shadowdepth == "auto") {
if(min(mapheight,na.rm=TRUE) != max(mapheight,na.rm=TRUE)) {
shadowdepth = -scale/5
} else {
max_dim = max(dim(mapheight))
shadowdepth = -max_dim/25
}
} else {
shadowdepth = shadowdepth/zscale
}
if(flat_distance == "auto") {
if(flat_direction == "x" || flat_direction == "-x" || flat_direction == "y" || flat_direction == "-y") {
flat_distance = 0.5
} else {
if(flat_direction == "z") {
flat_distance = 3
} else {
flat_distance = -3
}
}
} else {
if(flat_direction == "-z") {
flat_distance = -flat_distance
}
}
shadow_flat = flat_plot_render && shadow && flat_distance*scale < shadowdepth
shadowdepth = ifelse(shadow_flat, flat_distance*scale + shadowdepth, shadowdepth)
if(raytrace) {
if(is.null(saved_shadow_matrix)) {
raylayer = ray_shade(t(1-mapheight),maxsearch = 600,sunangle = sunangle,anglebreaks = anglebreaks,
zscale=1/scale,multicore = multicore,lambert = lambert, ...)
if(!preview) {
mapcolor %>%
add_shadow(raylayer,shadow_intensity) %>%
plot_3d((t(1-mapheight)),zscale=1/scale, triangulate = triangulate,
max_error = max_error, max_tri = max_tri, verbose = verbose, shadow = shadow,
shadowdepth=shadowdepth/scale, background = background, shadowcolor = shadowcolor, ... )
} else {
mapcolor %>%
add_shadow(raylayer,shadow_intensity) %>%
plot_map()
}
} else {
raylayer = saved_shadow_matrix
if(!preview) {
mapcolor %>%
add_shadow(raylayer,shadow_intensity) %>%
plot_3d((t(1-mapheight)),zscale=1/scale, triangulate = triangulate,
max_error = max_error, max_tri = max_tri, verbose = verbose, shadow = shadow,
shadowdepth=shadowdepth/scale, background = background, shadowcolor = shadowcolor, ... )
} else {
mapcolor %>%
add_shadow(raylayer,shadow_intensity) %>%
plot_map()
}
}
} else {
if(!preview) {
plot_3d(mapcolor, (t(1-mapheight)), zscale=1/scale, triangulate = triangulate,
max_error = max_error, max_tri = max_tri, verbose = verbose, shadow = shadow,
shadowdepth=shadowdepth/scale, background = background, shadowcolor = shadowcolor, ...)
} else {
plot_map(mapcolor)
}
}
if(!preview && flat_plot_render) {
if(flat_transparent_bg) {
new_temp = tempfile(fileext = ".png")
color_gg = color_gg + ggplot2::theme(plot.background = ggplot2::element_rect(fill=NA,color=NA))
ggplot2::ggsave(new_temp,color_gg,width = width,height = height,dpi=300)
colormaptemp = new_temp
}
mapcolor = png::readPNG(colormaptemp)
horizontal_offset = c(0,0)
shadowwidth = max(floor(min(dim((t(1-mapheight))))/10),5)
if(flat_direction == "x" || flat_direction == "-x") {
horizontal_offset = abs(c(width*300,0)*flat_distance + c(width*150,0) + c(shadowwidth*2,0))
if(flat_direction == "-x") {
horizontal_offset = -horizontal_offset
}
flat_distance = 0
} else if (flat_direction == "y" || flat_direction == "-y") {
horizontal_offset = abs(c(0,height*300)*flat_distance + c(0,height*150) + c(0,shadowwidth*2))
if(flat_direction == "y") {
horizontal_offset = -horizontal_offset
}
flat_distance = 0
}
render_floating_overlay(mapcolor, altitude = flat_distance, heightmap = (t(1-mapheight)),
zscale=1/scale, horizontal_offset = horizontal_offset)
if(shadow && flat_direction %in% c("x", "-x", "y", "-y")) {
if(shadowcolor == "auto") {
shadowcolor = convert_color(darken_color(background, darken=shadow_darkness), as_hex = TRUE)
}
make_shadow((t(1-mapheight)), shadowdepth, shadowwidth, background, shadowcolor,
offset = horizontal_offset)
}
}
if(save_shadow_matrix & !save_height_matrix) {
return(raylayer)
}
if(!save_shadow_matrix & save_height_matrix) {
return(1-t(mapheight))
}
if(save_shadow_matrix & save_height_matrix) {
return(list(1-t(mapheight),raylayer))
}
}