Skip to content

Latest commit

 

History

History
258 lines (212 loc) · 19.1 KB

modified_ASM2D.rst

File metadata and controls

258 lines (212 loc) · 19.1 KB

Modified ASM2D Property Package

.red {color:red} .lime {color:lime} .blue {color:blue}

This package is an extension of the base Activated Sludge Model no.2d (ASM2d) and implements properties and reactions of an activated sludge model for biological nutrient removal from wastewater using an activated sludge biological reactor with biological phosphorus removal as provided in Flores-Alsina, X. et al. (2016) [1].

Throughout this documentation, text in red has been removed in the Modified ASM2d model, text in lime has been added, and text in blue has been modified from its base ASM2d implementation.

The following modifications have been made to the base ASM2d model as provided in [1]:
  • adds inorganic carbon (S_IC), potassium (S_K), and magnesium (S_Mg) as solutes
  • removes total suspended solids (X_TSS), metal-hydroxides (X_MeOH), metal-phosphate (X_MeP), alkalinity (S_ALK), and any variables or parameters associated with alkalinity
  • removes the precipitation reaction (R20) and the re-dissolution reaction (R21)
  • updates the Petersen matrix based on the above changes
  • updates the rate expressions based on the above changes
This Modified Activated Sludge Model no.2D (ASM2D) property/reaction package:
  • supports 'H2O', 'S_A', 'S_F', 'S_I', S_N2, S_NH4, S_NO3, S_O2, S_PO4, S_K, S_Mg, S_IC, X_AUT, X_H, X_I, X_PAO, X_PHA, X_PP, and X_S as components
  • supports only liquid phase

Sets

Description Symbol Indices
Components j ['H2O', 'S_A', 'S_F', 'S_I', S_N2, S_NH4, S_NO3, S_O2, S_PO4, S_K, S_Mg, S_IC, X_AUT, X_H, X_I, X_PAO, X_PHA, X_PP, X_S]
Phases p ['Liq']

Components

The modified ASM2D model includes 18 components as outlined in the table below. Red text indicates the component has been removed in the Modified ASM2d model, and lime text indicates the component has been added.

Description Symbol Name in Model
Fermentation products, considered to be acetate S_A S_A
Fermentable, readily bio-degradable organic substrates S_F S_F
Inert soluble organic material S_I S_I
Dinitrogen, N2. SN2 is assumed to be the only nitrogenous product of denitrification S_{N2} S_N2
Ammonium plus ammonia nitrogen S_{NH4} S_NH4
Nitrate plus nitrite nitrogen (N03' + N02' -N); SN03 is assumed to include nitrate as well as nitrite nitrogen. S_{NO3} S_NO3
Dissolved oxygen S_{O2} S_O2
Inorganic soluble phosphorus, primarily ortho-phosphates S_{PO4} S_PO4
Potassium S_{K} S_K
Magnesium S_{Mg} S_Mg
Inorganic carbon S_{IC} S_IC
Alkalinity, [mol HCO_3- per m^3] S_{ALK} S_ALK
Autotrophic nitrifying organisms X_{AUT} X_AUT
Heterotrophic organisms X_H X_H
Inert particulate organic material X_I X_I
Metal-hydroxides X_{MeOH} X_MeOH
Metal-phosphate X_{MeP} X_MeP
Phosphate-accumulating organisms X_{PAO} X_PAO
A cell internal storage product of phosphorus-accumulating organisms, primarily comprising poly-hydroxy-alkanoates (PHA) X_{PHA} X_PHA
Poly-phosphate X_{PP} X_PP
Slowly biodegradable substrates X_S X_S
Total suspended solids, TSS X_{TSS} X_TSS

State variables

Red text indicates the state variable has been removed in the Modified ASM2d model.

Description Symbol Variable Index Units
Total volumetric flowrate Q flow_vol None \text{m}^3\text{/s}
Temperature T temperature None \text{K}
Pressure P pressure None \text{Pa}
Component mass concentrations C_j conc_mass_comp [j] \text{kg/}\text{m}^3
Molar alkalinity A alkalinity None \text{kmol HCO}_{3}^{-}\text{/m}^{3}

Stoichiometric Coefficients

Red text indicates the stoichiometric coefficient has been removed in the Modified ASM2d model, lime text indicates the stoichiometric coefficient has been added, and blue text indicates the coefficient has had its value changed from its base ASM2d implementation.

Description Symbol Parameter Default Value Units
C content of inert soluble COD S_I i_{CSI} i_CSI 0.36718 \text{dimensionless}
C content of inert soluble COD S_F i_{CSF} i_CSF 0.31843 \text{dimensionless}
C content of inert soluble COD S_A i_{CSA} i_CSA 0.375 \text{dimensionless}
C content of inert soluble COD X_I i_{CXI} i_CXI 0.36178 \text{dimensionless}
C content of inert soluble COD X_S i_{CXS} i_CXS 0.31843 \text{dimensionless}
C content of inert soluble COD X_B i_{CXB} i_CXB 0.36612 \text{dimensionless}
N content of inert soluble COD S_I i_{NSI} i_NSI 0.06003 \text{dimensionless}
N content of fermentable substrate S_F i_{NSF} i_NSF 0.03552 \text{dimensionless}
N content of inert particulate COD X_I i_{NXI} i_NXI 0.06003 \text{dimensionless}
N content of slowly biodegradable substrate X_S i_{NXS} i_NXS 0.03552 \text{dimensionless}
N content of biomass, X_H, X_PAO, X_AUT i_{NBM} i_NBM 0.08615 \text{dimensionless}
P content of inert soluble COD S_I i_{PSI} i_PSI 0.00 \text{dimensionless}
P content of fermentable substrate, S_F i_{PSF} i_PSF 0.00559 \text{dimensionless}
P content of inert particulate COD X_I i_{PXI} i_PXI 0.00649 \text{dimensionless}
P content of slowly biodegradable substrate X_S i_{PXS} i_PXS 0.00559 \text{dimensionless}
P content of biomass, X_H, X_PAO, X_AUT i_{PBM} i_PBM 0.02154 \text{dimensionless}
TSS to COD ratio for X_I i_{TSSXI} i_TSSXI 0.75 \text{dimensionless}
TSS to COD ratio for X_S i_{TSSXS} i_TSSXS 0.75 \text{dimensionless}
TSS to COD ratio for biomass, X_H, X_PAO, X_AUT i_{TSSBM} i_TSSBM 0.90 \text{dimensionless}
Production of S_I in hydrolysis f_{SI} f_SI 0 \text{dimensionless}
Yield coefficient for heterotrophic biomass X_H Y_{H} Y_H 0.625 \text{dimensionless}
Fraction of inert COD generated in lysis f_{XI} f_XI 0.1 \text{dimensionless}
Yield coefficient for P accumulating organisms (biomass/PHA) Y_{PAO} Y_PAO 0.625 \text{dimensionless}
PP requirement (PO4 release) per PHA stored Y_{PO4} Y_PO4 0.0129 \text{dimensionless}
PHA requirement for PP storage Y_{PHA} Y_PHA 0.2 \text{dimensionless}
Yield of autotrophic biomass per NO3- N Y_{A} Y_A 0.24 \text{dimensionless}
Potassium coefficient for polyphosphates i_{KXPP} i_KXPP 0.4204 \text{dimensionless}
Magnesium coefficient for polyphosphates i_{MgXPP} i_MgXPP 0.2614 \text{dimensionless}

Kinetic Parameters

Red text indicates the parameter has been removed in the Modified ASM2d model, lime text indicates the parameter has been added, and blue text indicates the parameter has had its value changed from its base ASM2d implementation.

Description Symbol Parameter Value at 20°C Units
Hydrolysis rate constant K_H K_H 2.46 \text{day}^{-1}
Anoxic hydrolysis reduction factor hl_{NO3} hl_NO3 0.6 \text{dimensionless}
Anaerobic hydrolysis reduction factor hl_{fe} hl_fe 0.40 \text{dimensionless}
Saturation/inhibition coefficient for oxygen KH_{O2} K_O2 0.0002 \text{kg O_2/}\text{m}^{3}
Saturation/inhibition coefficient for nitrate KH_{NO3} K_NO3 0.0005 \text{kg N/}\text{m}^{3}
Saturation coefficient for particulate COD KL_{X} KL_X 0.1 \text{kg X_S/}\text{kg X_H}
Maximum growth rate on substrate µ_H mu_H 4.23 \text{kg X_S/}\text{kg X_H . day}
Maximum rate for fermentation q_{fe} q_fe 2.11 \text{kg S_F/}\text{kg X_H . day}
Rate constant for lysis and decay b_H b_H 0.28 \text{day}^{-1}
Saturation coefficient for growth on SF K_F K_F 0.004 \text{kg COD/}\text{m}^{3}
Saturation coefficient for fermentation of SF K_{fe} K_fe 0.004 \text{d}^{-1}
Saturation coefficient for growth on acetate SA KH_A KH_A 0.004 \text{kg COD/}\text{m}^{3}
Saturation coefficient for ammonium (nutrient) KH_{NH4} KH_NH4 0.00005 \text{kg N/}\text{m}^{3}
Saturation coefficient for phosphate (nutrient) KH_{PO4} KH_PO4 0.00001 \text{kg P/}\text{m}^{3}
Saturation coefficient for alkalinity (HCO3-) K_{ALK} K_ALK 0.0001 \text{kmol HCO_{3}^{-}/}\text{m}^{3}
Rate constant for storage of X_PHA (base Xpp) q_{PHA} q_PHA 2.46 \text{kg PHA/}\text{kg PAO . day}
Rate constant for storage of X_PP q_{PP} q_PP 1.23 \text{kg PP/}\text{kg PAO . day}
Maximum growth rate of PAO µ_{PAO} mu_PAO 0.82 \text{day}^{-1}
Rate for Lysis of X_PAO b_{PAO} b_PAO 0.14 \text{day}^{-1}
Rate for Lysis of X_PP b_{PP} b_PP 0.14 \text{day}^{-1}
Rate for Lysis of X_PHA b_{PHA} b_PHA 0.14 \text{day}^{-1}
Saturation coefficient for phosphorus in storage of PP KP_P KP_P 0.0002 \text{kg P/}\text{m}^3
Saturation coefficient for poly-phosphate KP_{PP} KP_PP 0.01 \text{kg PP/}\text{kg PAO}
Maximum ratio of X_PP/X_PAO K_{MAX} K_MAX 0.34 \text{kg PP/}\text{kg PAO}
Inhibition coefficient for PP storage KI_{PP} KI_PP 0.02 \text{kg PP/}\text{kg PAO}
Saturation coefficient for PHA KP_{PHA} KP_PHA 0.01 \text{kg PHA/}\text{kg PAO}
Maximum growth rate of X_AUT µ_{AUT} mu_AUT 0.61 \text{day}^{-1}
Decay rate of X_AUT b_{AUT} b_AUT 0.09 \text{day}^{-1}
Rate constant for P precipitation k_{PRE} k_pre 1000 \text{m/}^{3}\text{kg Fe(OH)_3 . day}
Rate constant for redissolution k_{RED} k_red 0.6 \text{day}^{-1}
Reduction factor for denitrification hH_{NO3} hH_NO3 0.8 \text{dimensionless}
Anoxic reduction factor for endogenous respiration hH_{NO3, end} hH_NO3_end 0.5 \text{dimensionless}
Reduction factor under anoxic conditions hP_{NO3} hP_NO3 0.6 \text{dimensionless}
Anoxic reduction factor for decay of PAOs hP_{NO3, end} hP_NO3_end 0.33 \text{dimensionless}
Anoxic reduction factor for decay of PP hPP_{NO3, end} hPP_NO3_end 0.33 \text{dimensionless}
Anoxic reduction factor for decay of PHA hPHA_{NO3, end} hPHA_NO3_end 0.33 \text{dimensionless}
Anoxic reduction factor for decay of autotrophs hAUT_{NO3, end} hAUT_NO3_end 0.33 \text{dimensionless}

Properties

Description Symbol Variable Index Units
Fluid specific heat capacity c_p cp None \text{J/kg/K}
Mass density \rho dens_mass [p] \text{kg/}\text{m}^3

Process Rate Equations

Equations marked "(with decay)" indicate that the decay of heterotrophs and autotrophs is dependent on the electron acceptor present. Equations marked "(without decay)" indicate that the decay of heterotrophs and autotrophs does not change.

Red text indicates the equation has been removed in the Modified ASM2d model, and blue text indicates the equation has been modified from its base ASM2d implementation.

Description Equation
Aerobic hydrolysis \rho _1 = K_{H}(\frac{S_{O2}}{KL_{O2}+S_{O2}})(\frac{X_{S}/X_{H}}{KL_{X}+X_{S}/X_{H}})X_{H}
Anoxic hydrolysis \rho _2 = K_{H}\eta _{NO3}(\frac{KL_{O2}}{KL_{O2}+S_{O2}})(\frac{S_{NO3}}{KL_{NO3}+S_{NO3}})(\frac{X_{S}/X_{H}}{KL_{X}+X_{S}/X_{H}})X_{H}
Anaerobic hydrolysis \rho _3 = K_{H}\eta _{fe}(\frac{KL_{O2}}{KL_{O2}+S_{O2}})(\frac{KL_{NO3}}{KL_{NO3}+S_{NO3}})(\frac{X_{S}/X_{H}}{KL_{X}+X_{S}/X_{H}})X_{H}
Growth on fermentable substrates, S_F \rho _4 = µ_{H}(\frac{S_{O2}}{KH_{O2}+S_{O2}})(\frac{S_{F}}{K_{F}+S_{F}})(\frac{S_{F}}{S_{F}+S_{A}})(\frac{S_{NH4}}{KH_{NH4}+S_{NH4}})(\frac{S_{PO4}}{KH_{PO4}+S_{PO4}})X_{H}
Growth on fermentation products, S_A \rho _5 = µ_{H}(\frac{S_{O2}}{KH_{O2}+S_{O2}})(\frac{S_{A}}{KH_{A}+S_{A}})(\frac{S_{A}}{S_{F}+S_{A}})(\frac{S_{NH4}}{KH_{NH4}+S_{NH4}})(\frac{S_{PO4}}{KH_{PO4}+S_{PO4}})X_{H}
Denitrification with fermentable substrates, S_F \rho _6 = µ_{H}hH_{NO3}(\frac{KH_{O2}}{KH_{O2}+S_{O2}})(\frac{S_{NO3}}{KH_{NO3}+S_{NO3}})(\frac{S_{F}}{K_{F}+S_{F}})(\frac{S_{F}}{S_{F}+S_{A}})(\frac{S_{NH4}}{KH_{NH4}+S_{NH4}})(\frac{S_{PO4}}{KH_{PO4}+S_{PO4}})X_{H}
Denitrification with fermentation products, S_A \rho _7 = µ_{H}hH_{NO3}(\frac{KH_{O2}}{KH_{O2}+S_{O2}})(\frac{S_{NO3}}{KH_{NO3}+S_{NO3}})(\frac{S_{A}}{KH_{A}+S_{A}})(\frac{S_{A}}{S_{F}+S_{A}})(\frac{S_{NH4}}{KH_{NH4}+S_{NH4}})(\frac{S_{PO4}}{KH_{PO4}+S_{PO4}})X_{H}
Fermentation \rho _8 = q_{fe}(\frac{KH_{O2}}{KH_{O2}+S_{O2}})(\frac{KH_{NO3}}{KH_{NO3}+S_{NO3}})(\frac{S_{F}}{K_{fe}+S_{F}})X_{H}
Lysis (without decay) \rho _9 = b_{H}X_{H}
Lysis (with decay) \rho _9 = b_{H}(\frac{S_{O2}}{KH_{O2}+S_{O2}})+hH_{NO3,end}(\frac{KH_{O2}}{KH_{O2}+S_{O2}})(\frac{S_{NO3}}{KH_{NO3}+S_{NO3}})X_{H}
Storage of X_PHA \rho _{10} = q_{PHA}(\frac{S_{A}}{KP_{A}+S_{A}})(\frac{X_{PP}/X_{PAO}}{KP_{PP}+X_{PP}/X_{PAO}})X_{PAO}
Aerobic storage of X_PP \rho _{11} = q_{PP}(\frac{S_{O2}}{KP_{O2}+S_{O2}})(\frac{S_{PO4}}{KP_{P}+S_{PO4}})(\frac{X_{PHA}/X_{PAO}}{KP_{PHA}+X_{PHA}/X_{PAO}})(\frac{K_{MAX} - X_{PP}/X_{PAO}}{K_{IPP}+K_{MAX} - X_{PP}/X_{PAO}})X_{PAO}
Anoxic storage of X_PP \rho _{12} = q_{PP}hP_{NO3}(\frac{KP_{O2}}{KP_{O2}+S_{O2}})(\frac{S_{NO3}}{KP_{NO3}+S_{NO3}})(\frac{S_{PO4}}{KP_{P}+S_{PO4}})(\frac{X_{PHA}/X_{PAO}}{KP_{PHA}+X_{PHA}/X_{PAO}})(\frac{K_{MAX} - X_{PP}/X_{PAO}}{K_{IPP}+K_{MAX} - X_{PP}/X_{PAO}})X_{PAO}
Aerobic growth on X_PHA \rho _{13} = µ_{PAO}(\frac{S_{O2}}{KP_{O2}+S_{O2}})(\frac{S_{NH4}}{KP_{NH4}+S_{NH4}})(\frac{S_{PO4}}{KP_{PO4}+S_{PO4}})(\frac{X_{PHA}/X_{PAO}}{KP_{PHA}+X_{PHA}/X_{PAO}})X_{PAO}
Anoxic growth on X_PHA \rho _{14} = µ_{PAO}hP_{NO3}(\frac{KP_{O2}}{KP_{O2}+S_{O2}})(\frac{S_{NO3}}{KP_{NO3}+S_{NO3}})(\frac{S_{NH4}}{KP_{NH4}+S_{NH4}})(\frac{S_{PO4}}{KP_{PO4}+S_{PO4}})(\frac{X_{PHA}/X_{PAO}}{KP_{PHA}+X_{PHA}/X_{PAO}})X_{PAO}
Lysis of X_PAO (without decay) \rho _{15} = b_{PAO}X_{PAO}
Lysis of X_PAO (with decay) \rho _{15} = b_{PAO}(\frac{S_{O2}}{KP_{O2}+S_{O2}})+hP_{NO3,end}(\frac{KP_{O2}}{KP_{O2}+S_{O2}})(\frac{S_{NO3}}{KP_{NO3}+S_{NO3}})X_{PAO}
Lysis of X_PP (without decay) \rho _{16} = b_{PP}X_{PP}
Lysis of X_PP (with decay) \rho _{16} = b_{PP}(\frac{S_{O2}}{KP_{O2}+S_{O2}})+hPP_{NO3,end}(\frac{KP_{O2}}{KP_{O2}+S_{O2}})(\frac{S_{NO3}}{KP_{NO3}+S_{NO3}})X_{PP}
Lysis of X_PHA (without decay) \rho _{17} = b_{PHA}X_{PHA}
Lysis of X_PHA (with decay) \rho _{17} = b_{PHA}(\frac{S_{O2}}{KP_{O2}+S_{O2}})+hPHA_{NO3,end}(\frac{KP_{O2}}{KP_{O2}+S_{O2}})(\frac{S_{NO3}}{KP_{NO3}+S_{NO3}})X_{PHA}
Aerobic growth of X_AUT \rho _{18} = µ_{AUT}(\frac{S_{O2}}{KA_{O2}+S_{O2}})(\frac{S_{NH4}}{KA_{NH4}+S_{NH4}})(\frac{S_{PO4}}{KA_{PO4}+S_{PO4}})X_{AUT}
Lysis of X_AUT (without decay) \rho _{19} = b_{AUT}X_{AUT}
Lysis of X_AUT (with decay) \rho _{19} = b_{AUT}(\frac{S_{O2}}{KP_{O2}+S_{O2}})+hAUT_{NO3,end}(\frac{KP_{O2}}{KP_{O2}+S_{O2}})(\frac{S_{NO3}}{KP_{NO3}+S_{NO3}})X_{AUT}
Precipitation of phosphorus with ferric hydroxide \rho _{20} = k_{PRE}S_{PO4}X_{MeOH}
Redissolution \rho _{21} = k_{RED}X_{MeP}(\frac{S_{ALK}}{K_{ALK}+S_{ALK}})

Scaling

A thorough scaling routine for the ASM2D property package has yet to be implemented.

Class Documentation

.. currentmodule:: watertap.property_models.activated_sludge.modified_asm2d_properties

.. autoclass:: ModifiedASM2dParameterBlock
    :members:
    :noindex:

.. autoclass:: ModifiedASM2dParameterData
    :members:
    :noindex:

.. autoclass:: _ModifiedASM2dStateBlock
    :members:
    :noindex:

.. autoclass:: ModifiedASM2dStateBlockData
    :members:
    :noindex:

.. currentmodule:: watertap.property_models.activated_sludge.modified_asm2d_reactions

.. autoclass:: ModifiedASM2dReactionParameterBlock
    :members:
    :noindex:

.. autoclass:: ModifiedASM2dReactionParameterData
    :members:
    :noindex:

.. autoclass:: _ModifiedASM2dReactionBlock
    :members:
    :noindex:

.. autoclass:: ModifiedASM2dReactionBlockData
    :members:
    :noindex:


References

[1] X. Flores-Alsina, K. Solon, C.K. Mbamba, S. Tait, K.V. Gernaey, U. Jeppsson, D.J. Batstone, Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions fordynamic simulations of anaerobic digestion processes, Water Research. 95 (2016) 370-382. https://www.sciencedirect.com/science/article/pii/S0043135416301397