Skip to content

Latest commit

 

History

History
174 lines (127 loc) · 8.46 KB

reverse_osmosis_0D.rst

File metadata and controls

174 lines (127 loc) · 8.46 KB

Reverse Osmosis (0D)

This reverse osmosis (RO) unit model
  • is 0-dimensional
  • supports a single liquid phase only
  • supports steady-state only
  • is based on the solution-diffusion model and film theory
  • assumes isothermal conditions
.. index::
   pair: watertap.unit_models.reverse_osmosis_0D;reverse_osmosis_0D

.. currentmodule:: watertap.unit_models.reverse_osmosis_0D

Degrees of Freedom

Aside from the inlet feed state variables (i.e. temperature, pressure, component flowrates), the RO model has at least 4 degrees of freedom that should be fixed for the unit to be fully specified.

Typically, the following variables are fixed, in addition to state variables at the inlet:
  • membrane water permeability, A
  • membrane salt permeability, B
  • permeate pressure
  • membrane area

On the other hand, configuring the RO unit to calculate concentration polarization effects, mass transfer coefficient, and pressure drop would result in 3 additional degrees of freedom. In this case, in addition to the previously fixed variables, we typically fix the following variables to fully specify the unit:

  • feed-spacer porosity
  • feed-channel height
  • membrane length or membrane width or inlet Reynolds number

Model Structure

This RO model consists of 1 MembraneChannel0DBlock for the feed-side, a StateBlock indexed by time and space for the permeate-side (permeate_side[t, x]), and a StateBlock for the final permeate at the outlet (mixed_permeate).

  • The feed-side includes 2 StateBlocks (properties_in and properties_out) which are used for mass, energy, and momentum balances, and 2 additional StateBlocks for the conditions at the membrane interface (properties_interface_in and properties_interface_out).
  • The permeate-side includes 3 StateBlocks (properties_in, properties_out, and mixed_permeate). The inlet and outlet StateBlocks are used to only determine the permeate solute concentration for solvent and solute flux at the feed-side inlet and outlet, while the mixed StateBlock is used for mass balance based on the average flux.

Sets

Description Symbol Indices
Time t [0]
Inlet/outlet x ['in', 'out']
Phases p ['Liq']
Components j ['H2O', 'NaCl']*

*Solute depends on the imported property model; example shown here is for the NaCl property model.

Variables

Description Symbol Variable Name Index Units
Solvent permeability coefficient A A_comp [t, j] \text{m/Pa/s}
Solute permeability coefficient B B_comp [t, j] \text{m/s}
Mass density of solvent \rho_{solvent} dens_solvent [p] \text{kg/}\text{m}^3
Mass flux across membrane J flux_mass_phase_comp [t, x, p, j] \text{kg/s}\text{/m}^2
Membrane area A_m area None \text{m}^2
Component recovery rate R_j recovery_mass_phase_comp [t, p, j] \text{dimensionless}
Volumetric recovery rate R_{vol} recovery_vol_phase [t, p] \text{dimensionless}
Observed solute rejection r_j rejection_phase_comp [t, p, j] \text{dimensionless}
Over-pressure ratio P_{f,out}/\Delta \pi_{out} over_pressure_ratio [t] \text{dimensionless}
Mass transfer to permeate M_p mass_transfer_phase_comp [t, p, j] \text{kg/s}

The following variables are only built when specific configuration key-value pairs are selected.

if has_pressure_change is set to True:

Description Symbol Variable Name Index Units
Pressure drop \Delta P deltaP [t] \text{Pa}

if concentration_polarization_type is set to ConcentrationPolarizationType.fixed:

Description Symbol Variable Name Index Units
Concentration polarization modulus CP_{mod} feed_side.cp_modulus [t, j] \text{dimensionless}

if concentration_polarization_type is set to ConcentrationPolarizationType.calculated:

Description Symbol Variable Name Index Units
Mass transfer coefficient in feed channel k_f feed_side.K [t, x, j] \text{m/s}

if mass_transfer_coefficient is set to MassTransferCoefficient.calculated or pressure_change_type is set to PressureChangeType.calculated:

Description Symbol Variable Name Index Units
Feed-channel height h_{ch} feed_side.channel_height None \text{m}
Hydraulic diameter d_h feed_side.dh None \text{m}
Spacer porosity \epsilon_{sp} feed_side.spacer_porosity None \text{dimensionless}
Reynolds number Re feed_side.N_Re [t, x] \text{dimensionless}

if mass_transfer_coefficient is set to MassTransferCoefficient.calculated:

Description Symbol Variable Name Index Units
Schmidt number Sc feed_side.N_Sc_comp [t, x, j] \text{dimensionless}
Sherwood number Sh feed_side.N_Sh_comp [t, x, j] \text{dimensionless}

if mass_transfer_coefficient is set to MassTransferCoefficient.calculated or pressure_change_type is NOT set to PressureChangeType.fixed_per_stage:

Description Symbol Variable Name Index Units
Membrane length L length None \text{m}
Membrane width W width None \text{m}

if pressure_change_type is set to PressureChangeType.fixed_per_unit_length:

Description Symbol Variable Name Index Units
Average pressure drop per unit length of feed channel (\frac{\Delta P}{\Delta x})_{avg} feed_side.dP_dx [t] \text{Pa/m}

if pressure_change_type is set to PressureChangeType.calculated:

Description Symbol Variable Name Index Units
Feed-channel velocity v_f feed_side.velocity [t, x] \text{m/s}
Friction factor f feed_side.friction_factor_darcy [t, x] \text{dimensionless}
Pressure drop per unit length of feed channel at inlet/outlet \Delta P/\Delta x feed_side.dP_dx [t, x] \text{Pa/m}

Equations

Description Equation
Solvent flux across membrane J_{solvent} = \rho_{solvent} A(P_{f} - P_p - (\pi_{f}-\pi_{p}))
Solute flux across membrane J_{solute} = B(C_{f} - C_{p})
Average flux across membrane J_{avg, j} = \frac{1}{2}\sum_{x} J_{x, j}
Permeate mass flow by component j M_{p, j} = A_m J_{avg,j}
Permeate-side solute mass fraction X_{x, j} = \frac{J_{x, j}}{\sum_{x} J_{x, j}}
Feed-side membrane-interface solute concentration C_{interface} = CP_{mod}C_{bulk}=C_{bulk}\exp(\frac{J_{solvent}}{k_f})-\frac{J_{solute}}{J_{solvent}}(\exp(\frac{J_{solvent}}{k_f})-1)
Concentration polarization modulus CP_{mod} = C_{interface}/C_{bulk}
Mass transfer coefficient k_f = \frac{D Sh}{d_h}
Sherwood number Sh = 0.46 (Re Sc)^{0.36}
Schmidt number Sc = \frac{\mu}{\rho D}
Reynolds number Re = \frac{\rho v_f d_h}{\mu}
Hydraulic diameter d_h = \frac{4\epsilon_{sp}}{2/h_{ch} + (1-\epsilon_{sp})8/h_{ch}}
Cross-sectional area A_c = h_{ch}W\epsilon_{sp}
Membrane area A_m = LW
Pressure drop \Delta P = (\frac{\Delta P}{\Delta x})_{avg}L
Feed-channel velocity v_f = Q_f/A_c
Friction factor f = 0.42+\frac{189.3}{Re}
Pressure drop per unit length \frac{\Delta P}{\Delta x} = \frac{1}{2d_h}f\rho v_f^{2}
Component recovery rate R_j = \frac{M_{p,j}}{M_{f,in,j}}
Volumetric recovery rate R_{vol} = \frac{Q_{p}}{Q_{f,in}}
Observed solute rejection r_j = 1 - \frac{C_{p,mix}}{C_{f,in}}

Class Documentation