Skip to content

Latest commit

 

History

History
216 lines (182 loc) · 13.8 KB

translator_asm2d_adm1.rst

File metadata and controls

216 lines (182 loc) · 13.8 KB

ASM2d to ADM1 Translator

Introduction

A link is required to translate between biological based and physical or chemical mediated processes to develop plant-wide modeling of wastewater treatment. This model mediates the interaction between the Modified Activated Sludge Model 2d (ASM2d) and the Modified Anaerobic Digestor Model 1 (ADM1).

The model relies on the following key assumptions:

  • supports only liquid phase
  • supports only Modified ASM2d to Modified ADM1 translations
.. index::
   pair: watertap.unit_models.translators.translator_adm1_asm2d;translator_asm2d_adm1

.. currentmodule:: watertap.unit_models.translators.translator_asm2d_adm1

Degrees of Freedom

The translator degrees of freedom are the inlet feed state variables:

  • temperature
  • pressure
  • volumetric flowrate
  • solute compositions

Ports

This model provides two ports:

  • inlet
  • outlet

Sets

Description Symbol Indices
Time t [0]
Inlet/outlet x ['in', 'out']
Phases p ['Liq']
Inlet Components j_{in} ['H2O', 'S_A', 'S_F', 'S_I', 'S_N2', 'S_NH4', 'S_NO3', 'S_O2', 'S_PO4', 'S_K', 'S_Mg', 'S_IC', 'X_AUT', 'X_H', 'X_I', 'X_PAO', 'X_PHA', 'X_PP', 'X_S']
Outlet Components j_{out} ['H2O', 'S_su', 'S_aa', 'S_fa', 'S_va', 'S_bu', 'S_pro', 'S_ac', 'S_h2', 'S_ch4', 'S_IC', 'S_IN', 'S_IP', 'S_I', 'X_ch', 'X_pr', 'X_li', 'X_su', 'X_aa', 'X_fa', 'X_c4', 'X_pro', 'X_ac', 'X_h2', 'X_I', 'X_PHA', 'X_PP', 'X_PAO', 'S_K', 'S_Mg']
Ion j_{in} ['S_cat', 'S_an'] 1
Zero Flow Components z ['S_fa', 'S_h2', 'S_ch4', 'X_su', 'X_aa', 'X_fa', 'X_c4', 'X_pro', 'X_ac', 'X_h2']
Notes
1 "Ion" is a subset of "Outlet Components" and uses the same symbol j_in.

Parameters

Description Symbol Parameter Name Value Units
Soluble inerts from composites f_{sI, xc} f_sI_xc 1e-9 \text{dimensionless}
Particulate inerts from composites f_{xI, xc} f_xI_xc 0.1 \text{dimensionless}
Carbohydrates from composites f_{ch, xc} f_ch_xc 0.275 \text{dimensionless}
Proteins from composites f_{pr, xc} f_pr_xc 0.275 \text{dimensionless}
Lipids from composites f_{li, xc} f_li_xc 0.35 \text{dimensionless}
Valerate from polyhydroxyalkanoates f_{XPHA, Sva} f_XPHA_Sva 0.1 \text{dimensionless}
Butyrate from polyhydroxyalkanoates f_{XPHA, Sbu} f_XPHA_Sbu 0.1 \text{dimensionless}
Propionate from polyhydroxyalkanoates f_{XPHA, Spro} f_XPHA_Spro 0.4 \text{dimensionless}
Acetate from polyhydroxyalkanoates f_{XPHA, Sac} f_XPHA_Sac 0.4 \text{dimensionless}
Carbon content of polyhydroxyalkanoates C_{PHA} C_PHA 0.025 \text{dimensionless}

Equations and Relationships

Description Equation
Volumetric flow equality F_{out} = F_{in}
Temperature balance T_{out} = T_{in}
Pressure balance P_{out} = P_{in}
Zero-flow component conversions C_{z, out} = 0
Anions balance S_{an} = \frac{S_{IN, out}}{14}
Cations balance S_{cat} = \frac{S_{IC, out}}{12}
COD demanding compounds in S_O2 COD_{SO2} = S_{O2, in} / \frac{1 - Y_{H}}{Y_{H}}
S_O2 concentration S_{O2, 1} = S_{O2, in} - \frac{1 - Y_{H}}{Y_{H}} * COD_{SO2}
S_A concentration S_{A, 1} = S_{A, in} - \frac{COD_{SO2}}{Y_{H}}
S_NH4 concentration S_{NH4, 1} = S_{NH4, in} - (i_{NBM} * COD_{SO2})
S_PO4 concentration S_{PO4, 1} = S_{PO4, in} - (i_{PBM} * COD_{SO2})
S_IC concentration S_{IC, 1} = S_{IC, in} + \frac{COD_{SO2} * i_{CSA}}{Y_{H}} + (COD_{SO2} * i_{CXB})
X_H concentration X_{H, 1} = X_{H, in} + COD_{SO2}
COD demanding compounds in S_NO3 COD_{SNO3} = S_{NO3, in} / \frac{1 - Y_{H}}{i_{NOx, N2} * Y_{H}}
S_A concentration S_{A, 2} = S_{A, 1} - \frac{COD_{SNO3}}{Y_{H}}
S_NH4 concentration S_{NH4, 2} = S_{NH4, 1} - (COD_{SNO3} * i_{NBM})
S_N2 concentration S_{N2, 2} = S_{N2, in} + \frac{1 - Y_{H}}{i_{NOx, N2} * Y_{H}} * COD_{SNO3}
S_NO3 concentration S_{NO3, 2} = S_{NO3, in} - \frac{1 - Y_{H}}{i_{NOx, N2} * Y_{H}} * COD_{SNO3}
S_PO4 concentration S_{PO4, 2} = S_{PO4, 1} - (COD_{SNO3} * i_{PBM})
S_IC concentration S_{IC, 2} = S_{IC, 1} + \frac{COD_{SNO3} * i_{CSA}}{Y_{H}} + (COD_{SNO3} * i_{CXB})
X_H concentration X_{H, 2} = X_{H, 1} + COD_{SNO3}
Nitrogen demand for soluble inerts S_{ND} = S_{F, in} * i_{NSF}
Phosphorus demand for soluble inerts S_{PD} = S_{F, in} * i_{PSF}
Organic nitrogen from soluble inerts SN_{org} = \frac{S_{ND}}{Ni[S_{aa}] * 14}
Monosaccharides mapping (if SN_{org} >= S_{F, in}) S_{su} = in
Monosaccharides mapping (if SN_{org} < S_{F, in}) S_{su} = \frac{S_{F, in} - SN_{org}}{1000}
Amino acids mapping (if SN_{org} >= S_{F, in}) S_{aa} = \frac{S_{F, in}}{1000}
Amino acids mapping (if SN_{org} < S_{F, in}) S_{aa} = \frac{SN_{org}}{1000}
S_F concentration S_{F, 3} = S_{F, in} - (S_{su} * 1000) - (S_{aa} * 1000)
S_NH4 concentration S_{NH4, 3} = S_{NH4, 2} + (S_{F, in} * i_{NSF}) - (S_{aa} * Ni[S_{aa}] * 1000 * 14)
S_PO4 concentration S_{PO4, 3} = S_{PO4, 2} + (S_{F, in} * i_{PSF})
S_IC concentration S_{IC, 3} = S_{IC, 2} + (S_{F, in} * i_{CSF}) - (S_{su} * Ci[S_{su}] * 1000 * 12) - (S_{aa} * Ci[S_{aa}] * 1000 * 12)

Equations and Relationships (With Decay)

Description Equation
Biomass concentration bio = X_{H, 2} + X_{PAO, in} + X_{AUT, in}
S_I concentration S_{I, 4} = S_{I, in} + (bio * f_{sI, xc})
S_NH4 concentration S_{NH4, 4} = S_{NH4, 3} + (bio * i_{NBM}) - (bio * f_{sI, xc} * i_{NSI}) - (bio * f_{xI, xc} * i_{NSI}) - (bio * f_{pr, xc} * Ni[X_{pr}] * 14)
S_PO4 concentration S_{PO4, 4} = S_{PO4, 3} + (bio * i_{PBM}) - (bio * f_{sI, xc} * i_{PSI}) - (bio * f_{xI, xc} * i_{PXI}) - (bio * f_{ch, xc} * Pi[X_{ch}] * 31) - (bio * f_{li, xc} * Pi[X_{li}] * 31)
S_IC concentration S_{IC, 4} = S_{IC, 3} + (bio * i_{CXB}) - (bio * f_{sI, xc} * i_{CSI}) - (bio * f_{xI, xc} * i_{CXI}) - (bio * f_{pr, xc} * Ci[X_{pr}] * 12) - (bio * f_{ch, xc} * Ci[X_{ch}] * 12) - (bio * f_{li, xc} * Ci[X_{li}] * 12)
X_I concentration X_{I, 4} = X_{I, in} + (bio * f_{xI, xc})
X_H concentration X_{H, 4} = 0
X_PAO concentration X_{PAO, 4} = 0
X_AUT concentration X_{AUT, 4} = 0
Nitrogen demand for particulate inerts X_{ND} = X_{S, in} * i_{NXS}
Phosphorus demand for particulate inerts X_{PD} = X_{S, in} * i_{PXS}
Organic nitrogen from particulate inerts XN_{org} = \frac{X_{ND}}{Ni[X_{pr}] * 14}
Carbohydrates mapping (if XN_{org} >= X_{S, in}) X_{ch} = 0
Carbohydrates mapping (if XN_{org} < X_{S, in}) X_{ch} = \frac{(X_{S, in} - XN_{org}) * 0.4}{1000}
Protein mapping (if XN_{org} >= X_{S, in}) X_{pr} = \frac{S_{F, 3}}{1000}
Protein mapping (if XN_{org} < X_{S, in}) X_{pr} = \frac{XN_{org}}{1000}
Lipids mapping (if XN_{org} >= X_{S, in}) X_{li} = 0
Lipids mapping (if XN_{org} < X_{S, in}) X_{li} = \frac{(X_{S, in} - XN_{org}) * 0.6}{1000}
S_NH4 concentration S_{NH4, 5} = S_{NH4, 4} + (X_{S, in} * i_{NXS}) - (X_{pr} * Ni[X_{pr}] * 1000 * 14)
S_PO4 concentration S_{PO4, 5} = S_{PO4, 4} + (X_{S, in} * i_{PXS}) - (X_{ch} * Pi[X_{ch}] * 1000 * 31) - (X_{li} * Pi[X_{li}] * 1000 * 31)
S_IC concentration S_{IC, 5} = S_{IC, 4} + (S_{F, in} * i_{CXS}) - (X_{ch} * Ci[X_{ch}] * 1000 * 12) - (X_{pr} * Ci[X_{pr}] * 1000 * 12) - (X_{li} * Ci[X_{li}] * 1000 * 12)
X_S concentration X_{S, 5} = 0
X_PP concentration X_{PP, 6} = 0
X_PHA concentration X_{PHA, 6} = 0
S_va concentration S_{va, 6} = \frac{X_{PHA, 6} * f_{XPHA, Sva}}{1000}
S_bu concentration S_{bu, 6} = \frac{X_{PHA, 6} * f_{XPHA, Sbu}}{1000}
S_pro concentration S_{pro, 6} = \frac{X_{PHA, 6} * f_{XPHA, Spro}}{1000}
S_ac concentration S_{ac, 6} = \frac{X_{PHA, 6} * f_{XPHA, Sac}}{1000}
S_PO4 concentration S_{PO4, 6} = S_{PO4, 5} + X_{PP, in}
S_IC concentration S_{IC, 6} = S_{IC, 5} + (X_{PHA, in} * C_{PHA}) - (S_{va, 6} * Ci[S_{va}] * 1000 * 12) - (S_{bu, 6} * Ci[S_{bu}] * 1000 * 12) - (S_{pro, 6} * Ci[S_{pro}] * 1000 * 12) - (S_{ac, 6} * Ci[S_{ac}] * 1000 * 12)
S_K concentration S_{K, 6} = S_{K, in} + (K_{XPP} * X_{PP, in})
S_Mg concentration S_{Mg, 6} = S_{Mg, in} + (Mg_{XPP} * X_{PP, in})

Equations and Relationships (Without Decay)

Description Equation
Biomass concentration bio = X_{H, 2} + X_{AUT, in}
S_I concentration S_{I, 4} = S_{I, in} + (bio * f_{sI, xc})
S_NH4 concentration S_{NH4, 4} = S_{NH4, 3} + (bio * i_{NBM}) - (bio * f_{sI, xc} * i_{NSI}) - (bio * f_{xI, xc} * i_{NSI}) - (bio * f_{pr, xc} * Ni[X_{pr}] * 14)
S_PO4 concentration S_{PO4, 4} = S_{PO4, 3} + (bio * i_{PBM}) - (bio * f_{sI, xc} * i_{PSI}) - (bio * f_{xI, xc} * i_{PXI}) - (bio * f_{ch, xc} * Pi[X_{ch}] * 31) - (bio * f_{li, xc} * Pi[X_{li}] * 31)
S_IC concentration S_{IC, 4} = S_{IC, 3} + (bio * i_{CXB}) - (bio * f_{sI, xc} * i_{CSI}) - (bio * f_{xI, xc} * i_{CXI}) - (bio * f_{pr, xc} * Ci[X_{pr}] * 12) - (bio * f_{ch, xc} * Ci[X_{ch}] * 12) - (bio * f_{li, xc} * Ci[X_{li}] * 12)
X_I concentration X_{I, 4} = X_{I, in} + (bio * f_{xI, xc})
X_H concentration X_{H, 4} = 0
X_PAO concentration X_{PAO, 4} = X_{PAO, in}
X_PP concentration X_{PP, 4} = X_{PP, in}
X_PHA concentration X_{PHA, 4} = X_{PHA, in}
X_AUT concentration X_{AUT, 4} = 0
Nitrogen demand for particulate inerts X_{ND} = X_{S, in} * i_{NXS}
Phosphorus demand for particulate inerts X_{PD} = X_{S, in} * i_{PXS}
Organic nitrogen from particulate inerts XN_{org} = \frac{X_{ND}}{Ni[X_{pr}] * 14}
Carbohydrates mapping (if XN_{org} >= X_{S, in}) X_{ch} = 0
Carbohydrates mapping (if XN_{org} < X_{S, in}) X_{ch} = \frac{(X_{S, in} - XN_{org}) * 0.4}{1000}
Protein mapping (if XN_{org} >= X_{S, in}) X_{pr} = \frac{S_{F, 3}}{1000}
Protein mapping (if XN_{org} < X_{S, in}) X_{pr} = \frac{XN_{org}}{1000}
Lipids mapping (if XN_{org} >= X_{S, in}) X_{li} = 0
Lipids mapping (if XN_{org} < X_{S, in}) X_{li} = \frac{(X_{S, in} - XN_{org}) * 0.6}{1000}
S_NH4 concentration S_{NH4, 5} = S_{NH4, 4} + (X_{S, in} * i_{NXS}) - (X_{pr} * Ni[X_{pr}] * 1000 * 14)
S_PO4 concentration S_{PO4, 5} = S_{PO4, 4} + (X_{S, in} * i_{PXS}) - (X_{ch} * Pi[X_{ch}] * 1000 * 31) - (X_{li} * Pi[X_{li}] * 1000 * 31)
S_IC concentration S_{IC, 5} = S_{IC, 4} + (S_{F, in} * i_{CXS}) - (X_{ch} * Ci[X_{ch}] * 1000 * 12) - (X_{pr} * Ci[X_{pr}] * 1000 * 12) - (X_{li} * Ci[X_{li}] * 1000 * 12)
X_S concentration X_{S, 5} = 0
X_PAO concentration X_{PAO, 5} = X_{PAO, in}
X_PP concentration X_{PP, 5} = X_{PP, in}
X_PHA concentration X_{PHA, 5} = X_{PHA, in}
S_va concentration S_{va, 6} = 0
S_bu concentration S_{bu, 6} = 0
S_pro concentration S_{pro, 6} = 0
S_ac concentration S_{ac, 6} = 0
X_PAO concentration X_{PAO, 6} = X_{PAO, in}
X_PP concentration X_{PP, 6} = X_{PP, in}
X_PHA concentration X_{PHA, 6} = X_{PHA, in}
S_va concentration S_{va, 6} = \frac{X_{PHA, 6} * f_{XPHA, Sva}}{1000}
S_bu concentration S_{bu, 6} = \frac{X_{PHA, 6} * f_{XPHA, Sbu}}{1000}
S_pro concentration S_{pro, 6} = \frac{X_{PHA, 6} * f_{XPHA, Spro}}{1000}
S_ac concentration S_{ac, 6} = \frac{X_{PHA, 6} * f_{XPHA, Sac}}{1000}
S_PO4 concentration S_{PO4, 6} = S_{PO4, 5} + X_{PP, in}
S_IC concentration S_{IC, 6} = S_{IC, 5} + (X_{PHA, in} * C_{PHA}) - (S_{va, 6} * Ci[S_{va}] * 1000 * 12) - (S_{bu, 6} * Ci[S_{bu}] * 1000 * 12) - (S_{pro, 6} * Ci[S_{pro}] * 1000 * 12) - (S_{ac, 6} * Ci[S_{ac}] * 1000 * 12)
S_K concentration S_{K, 6} = S_{K, in} + (K_{XPP} * X_{PP, in})
S_Mg concentration S_{Mg, 6} = S_{Mg, in} + (Mg_{XPP} * X_{PP, in})

Classes

.. currentmodule:: watertap.unit_models.translators.translator_asm2d_adm1

.. autoclass:: TranslatorDataASM2dADM1
    :members:
    :noindex:

References

[1] Flores-Alsina, X., Solon, K., Mbamba, C.K., Tait, S., Gernaey, K.V., Jeppsson, U. and Batstone, D.J., 2016. Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes. Water Research, 95, pp.370-382. https://github.com/wwtmodels/Plant-Wide-Models