Skip to content

Latest commit

 

History

History
87 lines (69 loc) · 6.55 KB

nanofiltration_dspmde_0D.rst

File metadata and controls

87 lines (69 loc) · 6.55 KB

Nanofiltration- Donnan Steric Pore Model with Dielectric Exclusion (0D)

This unit model implements the Donnan Steric Pore Model with Dielectric Exclusion (DSPM-DE) for nanofiltration.

Note

Documentation for the DSPM-DE model is undergoing refinement.

Model Structure

The model consists of 1 ControlVolume0DBlock for the feed-side of the membrane and includes 11 StateBlocks overall.

  • The feed-side includes 2 StateBlocks (properties_in and properties_out) which are used for mass, energy, and momentum balances, and 2 additional StateBlocks for the conditions at the membrane interface (properties_interface).
  • 2 StateBlocks are attributed to the membrane pore entrance (pore_entrance) at the inlet and outlet of the module.
  • 2 StateBlocks are attributed to the membrane pore exit (pore_exit) at the inlet and outlet of the module.
  • The permeate-side of the membrane includes 3 StateBlocks; 2 of them are attributed to the permeate side at the inlet and outlet (permeate_side), and the 3rd StateBlock is attributed to the final, mixed permeate (mixed_permeate) exiting the module. The inlet and outlet StateBlocks of the permeate are used to only determine the permeate solute concentration for solvent and solute flux at the feed-side inlet and outlet, while the mixed_permeate StateBlock is used for mass balance based on the average flux.

Variables

Description Symbol Variable Index Units
Water flux, solute flux j_v, j_s,_i flux_mass_phase_comp [p] \text{kg/m}^2\text{/s}
Pore diffusivity of ion D_i,_p diffus_pore_phase_comp [p] \text{m}^2\text{/s}
Convective hindrance factor k_i,_c hindrance_factor_term_comp[[convective, diffusive],c] None \text{dimensionless}
Diffusive hindrance factor k_i,_d hindrance_factor_term_comp[[convective, diffusive],c] None \text{dimensionless}
Pore Diffusivity of ion D_i,_p diffus_pore_phase_comp [p] \text{m}^2\text{/s}
Pore radius r_p radius_pore [p] \text{m}
Stokes radius r_s,_i radius_stokes_comp[c] [p] \text{m}
rs/rp \lambda _i lambda_comp[c] [p] \text{dimensionless}
Effective membrane thickness \Delta x_e membrane_thickness_effective None \text{m}
Valency z_i charge_comp[c] [p] \text{dimensionless}
Steric partitioning factor \varphi _i partitioning_factor_steric_comp None \text{dimensionless}
Born solvation contribution to partitioning \varphi _{b_i} partitioning_factor_born_solvation_comp [p] \text{dimensionless}
Gibbs free energy of solvation dG_{solv} gibbs_solvation_comp None \text{J}
Membrane charge density c_x membrane_charge_density None \text{mol/m}^3
Dielectric constant of medium (pore) \Sigma _p dielectric_constant_pore [p] \text{dimensionless}
Dielectric constant of medium (feed) assumed equal to that of water \Sigma _f dielectric_constant_feed [p] \text{dimensionless}
Concentration C_{i,j} [feed,interface,pore_entrance,pore_exit,permeate].conc_mol)phase_comp [p,j] \text{kg/m}^3
Electric potential gradient between feed/interface xi electric_potential_grad_feed_interface None \text{dimensionless}
Electronic charge e_o electronic_charge [p] \text{C}
Absolute permittivity of vacuum \Sigma _o vacuum_electric_permittivity None \text{F/m}
Boltzmann constant k_b boltzmann_constant None \text{J/K}
Faraday's constant F faraday_constant None \text{dimensionless}
Ideal gas constant R gas_constant None \text{Check}

Relationships

Description Equation
Solvent flux in active layer (pore) domain J_s,_j = -D_{i,p}\frac{c_{i,j+1}-c_{i,j}}{\delta x_{j}}-0.5z_{i}(c_{i,j}+c_{i,j+1})D_{i,p}\frac{F}{RT}\frac{\psi _{j+1}-\psi _{j}}{\delta x_{j}}+0.5K_{i,c}(c_{i,j}+c_{i,j+1})J_{v}
Solute flux at feed/interface domain J_i = -k_{i}(C_{i,m}-C_{i,f})+J_{w}C_{i,m}-z_{i}C_{i,m}D_{i,\infty }\frac{F}{RT}\xi
Solute flux - solvent flux relationship J_i = J_{v}c_{i,p}
Diffusive hindered transport coefficient (\lambda _{i} \leq 0.95) K_{i,d} = \frac{1+(\frac{9}{8})\lambda _{i}ln(\lambda _{i})-1.56034\lambda _{i}+0.528155\lambda _{i}^{2}+1.91521\lambda _{i}^{3}-2.81903\lambda _{i}^{4}+0.270788\lambda _{i}^{5}-1.10115\lambda _{i}^{6}-0.435933\lambda _{i}^{7}}{(1-\lambda _{i})^{2}}
Diffusive hindered transport coefficient (\lambda _{i} > 0.95) K_{i,d} = 0.984(\frac{1-\lambda _{i}}{\lambda _{i}})^{(5/2)}
Convective hindered transport coefficient K_{i,c} = \frac{1+3.867\lambda _{i}-1.907\lambda _{i}^{2}-0.834\lambda _{i}^{3}}{1+1.867\lambda _{i}-0.741\lambda _{i}^{2}}
Stokes pore radius ratio \lambda _{i} = \frac{r_{i,stokes}}{r_{pore}}
Pore diffusion coefficient D_{i,p} = K_{i,d}D_{i,\infty }
Steric partitioning factor \Phi _i = (1-\lambda _{i})^2
Born solvation partitioning \Phi _b = exp(\frac{-\Delta G_{i}}{k_{b}T})
Gibbs free energy of solvation \Delta G = \frac{z_{i}^{2}e_{0}^{2}}{8\pi \varepsilon _{0}r_{i}}(\frac{1}{\varepsilon _{pore}}-\frac{1}{\varepsilon _{f}})
Solvent flux (Hagen-Poiseuille) J_w = \Delta P_{net}\frac{r_{pore}^{2}}{8v\rho _{w}\Delta x_e} =((P_{f}-P_{p})-\Delta \pi )\frac{r_{pore}^{2}}{8v\rho _{w}\Delta x_e}
Membrane-solution interface equilibrium \gamma _{i,1}c_{i,1} = \gamma _{i,m}c_{i,m}\Phi _{i}\Phi _{b}exp(\frac{-z_{i}F\Delta \psi _{D,m}}{RT})
Membrane-solution interface equilibrium \gamma _{i,N}c_{i,N} = \gamma _{i,p}c_{i,p}\Phi _{i}\Phi _{b}exp(\frac{-z_{i}F\Delta \psi _{D,p}}{RT})

Scaling

The DSPM-DE model includes support for scaling, such as providing default or calculating scaling factors for almost all variables.

Class Documentation

References

Geraldes and Alves, 2008 https://doi.org/10.1016/j.memsci.2008.04.054

Roy et al., 2015 http://dx.doi.org/10.1016/j.memsci.2015.06.030

Labban et al., 2017 http://dx.doi.org/10.1016/j.memsci.2016.08.062

Wang and Lin, 2021 https://doi.org/10.1016/j.memsci.2020.118809