Skip to content

Latest commit

 

History

History
257 lines (199 loc) · 12 KB

translator_asm1_adm1.rst

File metadata and controls

257 lines (199 loc) · 12 KB

ASM1 to ADM1 Translator

Introduction

A link is required to translate between biological and physically- or chemically-mediated processes to develop whole-plant modeling of wastewater treatment. This model mediates the interaction between the Activated Sludge Model 1 (ASM1) and the Anaerobic Digestor Model 1 (ADM1).

The model relies on the following key assumptions:

  • supports only liquid phase
  • supports only ASM1 to ADM1 translations
.. index::
   pair: watertap.unit_models.translators.translator_asm1_adm1;translator_asm1_adm1

.. currentmodule:: watertap.unit_models.translators.translator_asm1_adm1

Degrees of Freedom

The translator degrees of freedom are the inlet feed state variables:

  • temperature
  • pressure
  • volumetric flowrate
  • solute compositions
  • cations
  • anions

Ports

This model provides two ports:

  • inlet
  • outlet

Sets

Description Symbol Indices
Time t [0]
Inlet/outlet x ['in', 'out']
Phases p ['Liq']
Inlet Components j ['H2O', 'S_I', 'S_S', 'X_I', 'X_S', 'X_BH', 'X_BA', 'X_P', 'S_O', 'S_NO', 'S_NH', 'S_ND', 'X_ND', 'S_ALK']
Ion j ['S_cat', 'S_an'] *
Outlet Components j ['H2O', 'S_su', 'S_aa', 'S_fa', 'S_va', 'S_bu', 'S_pro', 'S_ac', 'S_h2', 'S_ch4', 'S_IC', 'S_IN', 'S_I', 'X_c', 'X_ch', 'X_pr', 'X_li', 'X_su', 'X_aa', 'X_fa', 'X_c4', 'X_pro', 'X_ac', 'X_h2', 'X_I', 'S_cat', 'S_an', 'S_co2']
Notes
* Ion" is a subset of "Component" and uses the same symbol j.

ASM1 Components

Additional documentation on the ASM1 property model can be found here: Activated Sludge Model 1 Documentation

Description Symbol Variable
Soluble inert organic matter, S_I S_I S_I
Readily biodegradable substrate, S_S S_S S_S
Particulate inert organic matter, X_I X_I X_I
Slowly biodegradable substrate, X_S X_S X_S
Active heterotrophic biomass, X_BH X_{BH} X_BH
Active autotrophic biomass, X_BA X_{BA} X_BA
Particulate products arising from biomass decay, X_P X_P X_P
Oxygen, S_O S_O S_O
Nitrate and nitrite nitrogen, S_NO S_{NO} S_NO
{NH_{4}}^{+} + NH_{3} Nitrogen, S_NH S_{NH} S_NH
Soluble biodegradable organic nitrogen, S_ND S_{ND} S_ND
Particulate biodegradable organic nitrogen, X_ND X_{ND} X_ND
Alkalinity, S_ALK S_{ALK} S_ALK

ADM1 Components

Additional documentation on the ADM1 property model can be found here: Anaerobic Digestion Model 1 Documentation

Description Symbol Variable
Monosaccharides, S_su S_{su} S_su
Amino acids, S_aa S_{aa} S_aa
Long chain fatty acids, S_fa S_{fa} S_fa
Total valerate, S_va S_{va} S_va
Total butyrate, S_bu S_{bu} S_bu
Total propionate, S_pro S_{pro} S_pro
Total acetate, S_ac S_{ac} S_ac
Hydrogen gas, S_h2 S_{h2} S_h2
Methane gas, S_ch4 S_{ch4} S_ch4
Inorganic carbon, S_IC S_{IC} S_IC
Inorganic nitrogen, S_IN S_{IN} S_IN
Soluble inerts, S_I S_I S_I
Composites, X_c X_c X_c
Carbohydrates, X_ch X_{ch} X_ch
Proteins, X_pr X_{pr} X_pr
Lipids, X_li X_{li} X_li
Sugar degraders, X_su X_{su} X_su
Amino acid degraders, X_aa X_{aa} X_aa
Long chain fatty acid (LCFA) degraders, X_fa X_{fa} X_fa
Valerate and butyrate degraders, X_c4 X_{c4} X_c4
Propionate degraders, X_pro X_{pro} X_pro
Acetate degraders, X_ac X_{ac} X_ac
Hydrogen degraders, X_h2 X_{h2} X_h2
Particulate inerts, X_I X_I X_I
Total cation equivalents concentration, S_cat S_{cat} S_cat
Total anion equivalents concentration, S_an S_{an} S_an
Carbon dioxide, S_co2 S_{co2} S_co2

NOTE: S_{h2} and S_{ch4} have vapor phase and liquid phase, S_{co2} only has vapor phase, and the other components only have liquid phase. The amount of CO_2 dissolved in the liquid phase is equivalent to S_{IC} - S_{HCO3^{-}} .

Parameters

Description Symbol Parameter Name Value Units
Nitrogen fraction in particulate products i_{xe} i_xe 0.06 \text{dimensionless}
Nitrogen fraction in biomass i_{xb} i_xb 0.08 \text{dimensionless}
Anaerobic degradable fraction of X_I and:math:X_P f_{xI} f_xI 0.05 \text{dimensionless}

Equations and Relationships

Description Equation
Pressure balance P_{out} = P_{in}
Temperature balance T_{out} = T_{in}
Volumetric flow equality F_{out} = F_{in}

COD Equations

The total incoming COD is reduced in a step-wise manner until the COD demand has been satisfied. The reduction is based on a hierarchy of ASM1 state variables such that S_s is reduced by the COD demand first. If there is insufficient S_s present, then S_s is reduced to zero and the remaining demand is subtracted from X_s. If necessary, X_{BH} and X_{BA} may also need to be reduced.

Description Equation
COD demand COD_{demand} = S_{o} + 2.86S_{NO}
Readily biodegradable substrate remaining (step 1) S_{S, inter} = S_{S} - COD_{demand}
Slowly biodegradable substrate remaining (step 2) X_{S, inter} = X_{S} - COD_{demand, 2}
Active heterotrophic biomass remaining (step 3) X_{BH, inter} = X_{BH} - COD_{demand, 3}
Active autotrophic biomass remaining (step 4) X_{BA, inter} = X_{BA} - COD_{demand, 4}
Soluble COD COD_{s} = S_{I} + S_{S, inter}
Particulate COD COD_{p} = X_{I} + X_{S, inter} + X_{BH, inter} + X_{BA, inter} + X_{P}
Total COD COD_{t} = COD_{s} + COD_{p}

TKN Equation

The Total incoming Kjeldahl nitrogen is calculated with components updated in the anaerobic environment.

Description Equation
Total Kjeldahl nitrogen TKN = S_{NH} + S_{ND} + X_{ND} + i_{xb}(X_{BH, inter} + X_{BA, inter}) + i_{xe}(X_{I} + X_{P})

S_{nd} and S_s Mapping Equations

../../../_static/unit_models/translators/mapping_step_a.jpg

Figure 1. Schematic illustration of S_{nd} and S_s mapping (Copp et al. 2006)

Description Equation
Required soluble COD ReqCOD_{s} = \frac{S_{ND}}{N_{aa} * 14}
Amino acids mapping (if S_{S,inter} > ReqCOD_{s}) S_{aa} = ReqCOD_{s}
Amino acids mapping (if S_{S,inter} \leq ReqCOD_{s}) S_{aa} = S_{S, inter}
Monosaccharides mapping step A (if S_{S,inter} > ReqCOD_{s}) S_{su, A} = S_{S, inter} - ReqCOD_{s}
Monosaccharides mapping step A (if S_{S,inter} \leq ReqCOD_{s}) S_{su, A} = 0
COD remaining from step A COD_{remain, A} = COD_{t} - S_{S,inter}
Organic nitrogen pool remaining from step A OrgN_{remain, A} = TKN - (S_{aa} * N_{aa} * 14) - S_{NH}

Soluble Inert COD Mapping Equations

../../../_static/unit_models/translators/mapping_step_b.jpg

Figure 2. Schematic illustration of soluble inert COD mapping (Copp et al. 2006)

Description Equation
Required soluble inert organic nitrogen OrgN_{s, req} = S_{I} * N_{I} * 14
Soluble inert mapping step B (if OrgN_{remain, A} > OrgN_{s, req}) S_{I, ADM1} = S_{I}
Soluble inert mapping step B (if OrgN_{remain, A} \leq OrgN_{s, req}) S_{I, ADM1} = \frac{OrgN_{remain, A}}{N_{I} * 14}
Monosaccharides mapping step B (if OrgN_{remain, A} > OrgN_{s, req}) S_{su} = S_{su, A}
Monosaccharides mapping step B (if OrgN_{remain, A} \leq OrgN_{s, req}) S_{su} = S_{su, A} + S_{I} - S_{I, ADM1}
COD remaining from step B COD_{remain, B} = COD_{remain, A} - S_{I}
Organic nitrogen pool remaining from step B OrgN_{remain, B} = OrgN_{remain, A} - (S_{I, ADM1} * N_{I} * 14)

Particulate Inert COD Mapping Equations

../../../_static/unit_models/translators/mapping_step_c.jpg

Figure 3. Schematic illustration of particulate inert COD mapping (Copp et al. 2006)

Description Equation
Required particulate inert material OrgN_{x, req} = f_{xi} * (X_{P} + X_{I}) * N_{I} * 14
Particulate inert mapping step C (if OrgN_{remain, B} > OrgN_{x, req}) X_{I, ADM1} = f_{xi} * (X_{P} + X_{I})
Particulate inert mapping step C (if OrgN_{remain, B} \leq OrgN_{x, req}) X_{I, ADM1} = \frac{OrgN_{remain, B}}{N_{I} * 14}
COD remaining from step C COD_{remain, C} = COD_{remain, B} - X_{I, ADM1}
Organic nitrogen pool remaining from step C OrgN_{remain, C} = OrgN_{remain, B} - (X_{I_ADM1} * N_{I} * 14)

Final COD and TKN Mapping Equations

../../../_static/unit_models/translators/mapping_step_final.jpg

Figure 4. Schematic illustration of final COD and TKN mapping (Copp et al. 2006)

Description Equation
Required soluble COD COD_{Xc, req} = \frac{OrgN_{remain, C}}{N_{xc} * 14}
Composites mapping (if COD_{remain, C} > COD_{Xc, req}) X_{C} = COD_{Xc, req}
Composites mapping (if COD_{remain, C} \leq COD_{Xc, req}) X_{C} = COD_{remain, C}
Carbohydrates mapping (if COD_{remain, C} > COD_{Xc, req}) X_{ch} = \frac{f_{ch, xc} (COD_{remain, C} - X_{C})}{f_{ch, xc} - f_{li, xc}}
Carbohydrates mapping (if COD_{remain, C} \leq COD_{Xc, req}) X_{ch} = 0
Lipids mapping (if COD_{remain, C} > COD_{Xc, req}) X_{li} = \frac{f_{li, xc} (COD_{remain, C} - X_{C})}{f_{ch, xc} - f_{li, xc}}
Lipdis mapping (if COD_{remain, C} \leq COD_{Xc, req}) X_{li} = 0
Inorganic nitrogen mapping (if COD_{remain, C} > COD_{Xc, req}) S_{IN} = S_{NH, in}
Inorganic nitrogen mapping (if COD_{remain, C} \leq COD_{Xc, req}) S_{IN} = S_{NH, in} + (OrgN_{remain, C} - X_{C} * N_{xc} * 14)
Anions balance S_{an} = \frac{S_{IN}}{14}
Cations balance S_{cat} = \frac{S_{IC}}{12}

Classes

.. currentmodule:: watertap.unit_models.translators.translator_asm1_adm1

.. autoclass:: TranslatorDataASM1ADM1
    :members:
    :noindex:

References

[1] Copp J. and Jeppsson, U., Rosen, C., 2006. Towards an ASM1 - ADM1 State Variable Interface for Plant-Wide Wastewater Treatment Modeling. Proceedings of the Water Environment Federation, 2003, pp 498-510. https://www.accesswater.org/publications/proceedings/-290550/towards-an-asm1---adm1-state-variable-interface-for-plant-wide-wastewater-treatment-modeling