Skip to content

Latest commit

 

History

History
412 lines (342 loc) · 29.9 KB

modified_ADM1.rst

File metadata and controls

412 lines (342 loc) · 29.9 KB

Modified ADM1 Property Package

.red {color:red} .lime {color:lime} .blue {color:blue}

This package is an extension of the base Anaerobic Digestion Model no.1 (ADM1) and implements properties and reactions of an anaerobic digestion model for wastewater treatment using an anaerobic digester as provided in Batstone, D. J. et al. (2002) and Rosen and Jeppsson (2006).

Throughout this documentation, text in red has been removed in the Modified ADM1 model, text in lime has been added, and text in blue has been modified from its base ADM1 implementation.

The following modifications have been made to the base ADM1 model as provided in Flores-Alsina, X. et al. (2016):
  • tracks inorganic phosphorus (S_IP), polyhydroxyalkanoates (X_PHA), polyphosphates (X_PP), phosphorus accumulating organisms (X_PAO), potassium (S_K), and magnesium (S_Mg)
  • removes the composite material variable (X_C) and the associated disintegration reaction
  • adds 7 additional reactions
This modified ADM1 property/reaction package:
  • supports 'H2O', 'S_su', 'S_aa', 'S_fa', 'S_va', 'S_bu', 'S_pro', 'S_ac', 'S_h2', 'S_ch4', 'S_IC', 'S_IN', 'S_IP', 'S_I', 'X_ch', 'X_pr', 'X_li', 'X_su', 'X_aa', 'X_fa', 'X_c4', 'X_pro', 'X_ac', 'X_h2', 'X_I', 'X_PHA', 'X_PP', 'X_PAO', 'S_K', 'S_Mg', 'S_cat', 'S_an', and 'S_co2' as components
  • supports only liquid and vapor phase
  • only makes changes to the liquid phase modelling

Sets

Description Symbol Indices
Components j ['H2O', 'S_su', 'S_aa', 'S_fa', 'S_va', 'S_bu', 'S_pro', 'S_ac', 'S_h2', 'S_ch4', 'S_IC', 'S_IN', 'S_IP', 'S_I', 'X_ch', 'X_pr', 'X_li', 'X_su', 'X_aa', 'X_fa', 'X_c4', 'X_pro', 'X_ac', 'X_h2', 'X_I', 'X_PHA', 'X_PP', 'X_PAO', 'S_K', 'S_Mg', 'S_cat', 'S_an', 'S_co2']
Phases p ['Liq', 'Vap']

Components

Red text indicates the component has been removed in the Modified ADM1 model, and lime text indicates the component has been added.

Description Symbol Variable
Monosaccharides, S_su Ssu S_su
Amino acids, S_aa Saa S_aa
Long chain fatty acids, S_fa Sfa S_fa
Total valerate, S_va Sva S_va
Total butyrate, S_bu Sbu S_bu
Total propionate, S_pro Spro S_pro
Total acetate, S_ac Sac S_ac
Hydrogen gas, S_h2 Sh2 S_h2
Methane gas, S_ch4 Sch4 S_ch4
Inorganic carbon, S_IC SIC S_IC
Inorganic nitrogen, S_IN SIN S_IN
Inorganic phosphorus, S_IP SIP S_IP
Soluble inerts, S_I SI S_I
Composites, X_c Xc X_c
Carbohydrates, X_ch Xch X_ch
Proteins, X_pr Xpr X_pr
Lipids, X_li Xli X_li
Sugar degraders, X_su Xsu X_su
Amino acid degraders, X_aa Xaa X_aa
Long chain fatty acid (LCFA) degraders, X_fa Xfa X_fa
Valerate and butyrate degraders, X_c4 Xc4 X_c4
Propionate degraders, X_pro Xpro X_pro
Acetate degraders, X_ac Xac X_ac
Hydrogen degraders, X_h2 Xh2 X_h2
Particulate inerts, X_I XI X_I
Polyhydroxyalkanoates, X_PHA XPHA X_PHA
Polyphosphates, X_PP XPP X_PP
Phosphorus accumulating organisms, X_PAO XPAO X_PAO
Potassium, S_K SK S_K
Magnesium, S_Mg SMg S_Mg
Total cation equivalents concentration, S_cat Scat S_cat
Total anion equivalents concentration, S_an San S_an
Carbon dioxide, S_co2 Sco2 S_co2

NOTE: S_h2 and S_ch4 have vapor phase and liquid phase, S_co2 only has vapor phase, and the other components only have liquid phase. The amount of CO2 dissolved in the liquid phase is equivalent to S_IC - S_HCO3-.

State variables

Description Symbol Variable Index Units
Total volumetric flowrate Q flow_vol None m3/s
Temperature T temperature None K
Pressure P pressure None Pa
Component mass concentrations Cj conc_mass_comp [j] kg/m3
Anions in molar concentrations Ma anions None kmol/m3
Cations in molar concentrations Mc cations None kmol/m3
Component carbon content Ci Ci_dict [j] kmol/kg
Component nitrogen content Ni Ni_dict [j] kmol/kg
Component phosphorus content Pi Pi_dict [j] kmol/kg
Component pressure Pj, sat pressure_sat [j] Pa
Reference temperature Tref temperature_ref None K
Reference component mass concentrations Cj, ref conc_mass_comp_ref [j] kg/m3

Stoichiometric Parameters

Red text indicates the parameter has been removed in the Modified ADM1 model, and lime text indicates the parameter has been added.

Description Symbol Parameter Value at 20 C Units
Soluble inerts from composites, f_sI_xc fsI, xc f_sI_xc 0.1 dimensionless
Particulate inerts from composites, f_xI_xc fxI, xc f_xI_xc 0.2 dimensionless
Carbohydrates from composites, f_ch_xc fch, xc f_ch_xc 0.2 dimensionless
Proteins from composites, f_pr_xc fpr, xc f_pr_xc 0.2 dimensionless
Lipids from composites, f_li_xc fli, xc f_li_xc 0.3 dimensionless
Nitrogen content of composites, N_xc Nxc N_xc 0.0376/14 kmol-N/kg-COD
Nitrogen content of inerts, N_I NI N_I 0.06/14 kmol-N/kg-COD
Nitrogen in amino acids and proteins, N_aa Naa N_aa 0.007 kmol-N/kg-COD
Nitrogen content in bacteria, N_bac Nbac N_bac 0.08/14 kmol-N/kg-COD
Reference component mass concentration of hydrogen sulfide, Z_h2s Zh2s Z_h2s 0 kg/m3
Fraction of inert particulate organics from biomass, f_xi_xb fxi, xb f_xi_xb 0.1 dimensionless
Fraction of carbohydrates from biomass, f_ch_xb fch, xb f_ch_xb 0.275 dimensionless
Fraction of lipids from biomass, f_li_xb fli, xb f_li_xb 0.35 dimensionless
Fraction of proteins from biomass, f_pr_xb fpr, xb f_pr_xb 0.275 dimensionless
Fraction of soluble inerts from biomass, f_si_xb fsi, xb f_si_xb 0 dimensionless
Fatty acids from lipids, f_fa_li ffa, li f_fa_li 0.95 dimensionless
Hydrogen from sugars, f_h2_su fh2, su f_h2_su 0.19 dimensionless
Butyrate from sugars, f_bu_su fbu, su f_bu_su 0.13 dimensionless
Propionate from sugars, f_pro_su fpro, su f_pro_su 0.27 dimensionless
Acetate from sugars, f_ac_su fac, su f_ac_su 0.41 dimensionless
Hydrogen from amino acids, f_h2_aa fh2, aa f_h2_aa 0.06 dimensionless
Valerate from amino acids, f_va_aa fva, aa f_va_aa 0.23 dimensionless
Butyrate from amino acids, f_bu_aa fbu, aa f_bu_aa 0.26 dimensionless
Propionate from amino acids, f_pro_aa fpro, aa f_pro_aa 0.05 dimensionless
Acetate from amino acids, f_ac_aa fac, aa f_ac_aa 0.4 dimensionless
Yield of biomass on sugar substrate, Y_su Ysu Y_su 0.1 kg-COD X/kg-COD S
Yield of biomass on amino acid substrate, Y_aa Yaa Y_aa 0.08 kg-COD X/kg-COD S
Yield of biomass on fatty acid substrate, Y_fa Yfa Y_fa 0.06 kg-COD X/kg-COD S
Yield of biomass on valerate and butyrate substrate, Y_c4 Yc4 Y_c4 0.06 kg-COD X/kg-COD S
Yield of biomass on propionate substrate, Y_pro Ypro Y_pro 0.04 kg-COD X/kg-COD S
Yield of biomass on acetate substrate, Y_ac Yac Y_ac 0.05 kg-COD X/kg-COD S
Yield of hydrogen per biomass, Y_h2 Yh2 Y_h2 0.06 kg-COD X/kg-COD S

Kinetic Parameters

Red text indicates the parameter has been removed in the Modified ADM1 model, and lime text indicates the parameter has been added.

Description Symbol Parameter Value at 20 C Units
First-order kinetic parameter for disintegration, k_dis kdis k_dis 0.5 d − 1
First-order kinetic parameter for hydrolysis of carbohydrates, k_hyd_ch khyd, ch k_hyd_ch 10 d − 1
First-order kinetic parameter for hydrolysis of proteins, k_hyd_pr khyd, pr k_hyd_pr 10 d − 1
First-order kinetic parameter for hydrolysis of lipids, k_hyd_li khyd, li k_hyd_li 10 d − 1
Water dissociation constant, pK_W pKW pKW 14 dimensionless
Process inhibition term, I I I 1 dimensionless
Inhibition parameter for inorganic nitrogen, K_S_IN KSIN K_S_IN 1e-4 kmol/m3
Monod maximum specific uptake rate of sugars, k_m_su kmsu k_m_su 30 d − 1
Half saturation value for uptake of sugars, K_S_su KSsu K_S_su 0.5 kg/m3
Upper limit of pH for uptake rate of amino acids, pH_UL_aa pHUL, aa pH_UL_aa 5.5 dimensionless
Lower limit of pH for uptake rate of amino acids, pH_LL_aa pHLL, aa pH_LL_aa 4 dimensionless
Monod maximum specific uptake rate of amino acids, k_m_aa kmaa k_m_aa 50 d − 1
Half saturation value for uptake of amino acids, K_S_aa KSaa K_S_aa 0.3 kg/m3
Monod maximum specific uptake rate of fatty acids, k_m_fa kmfa k_m_fa 6 d − 1
Half saturation value for uptake of fatty acids, K_S_fa KSfa K_S_fa 0.4 kg/m3
Inhibition parameter for hydrogen during uptake of fatty acids, K_I_h2_fa KI, h2fa K_I_h2_fa 5e-6 kg/m3
Monod maximum specific uptake rate of valerate and butyrate, k_m_c4 kmc4 k_m_c4 20 d − 1
Half saturation value for uptake of valerate and butyrate, K_S_c4 KSc4 K_S_c4 0.2 kg/m3
Inhibition parameter for hydrogen during uptake of valerate and butyrate, K_I_h2_c4 KI, h2c4 K_I_h2_c4 1e-5 kg/m3
Monod maximum specific uptake rate of propionate, k_m_pro kmpro k_m_pro 13 d − 1
Half saturation value for uptake of propionate, K_S_pro KSpro K_S_pro 0.1 kg/m3
Inhibition parameter for hydrogen during uptake of propionate, K_I_h2_pro KI, h2pro K_I_h2_pro 3.5e-6 kg/m3
Monod maximum specific uptake rate of acetate, k_m_ac kmac k_m_ac 8 d − 1
Half saturation value for uptake of acetate, K_S_ac KSac K_S_ac 0.15 kg/m3
Inhibition parameter for ammonia during uptake of acetate, K_I_nh3 KI, nh3 K_I_nh3 0.0018 kg/m3
Upper limit of pH for uptake rate of acetate, pH_UL_ac pHUL, ac pH_UL_ac 7 dimensionless
Lower limit of pH for uptake rate of acetate, pH_LL_ac pHLL, ac pH_LL_ac 6 dimensionless
Monod maximum specific uptake rate of hydrogen, k_m_h2 kmh2 k_m_h2 35 d − 1
Half saturation value for uptake of hydrogen, K_S_h2 KSh2 K_S_h2 7e-6 kg/m3
Upper limit of pH for uptake rate of hydrogen, pH_UL_h2 pHUL, h2 pH_UL_h2 6 dimensionless
Lower limit of pH for uptake rate of hydrogen, pH_LL_h2 pHLL, h2 pH_LL_h2 5 dimensionless
First-order decay rate for X_su, k_dec_X_su kdec, Xsu k_dec_X_su 0.02 d − 1
First-order decay rate for X_aa, k_dec_X_aa kdec, Xaa k_dec_X_aa 0.02 d − 1
First-order decay rate for X_fa, k_dec_X_fa kdec, Xfa k_dec_X_fa 0.02 d − 1
First-order decay rate for X_c4, k_dec_X_c4 kdec, Xc4 k_dec_X_c4 0.02 d − 1
First-order decay rate for X_pro, k_dec_X_pro kdec, Xpro k_dec_X_pro 0.02 d − 1
First-order decay rate for X_ac, k_dec_X_ac kdec, Xac k_dec_X_ac 0.02 d − 1
First-order decay rate for X_h2, k_dec_X_h2 kdec, Xh2 k_dec_X_h2 0.02 d − 1
Valerate acid-base equilibrium constant, K_a_va Ka, va K_a_va 1.38e-5 kmol/m3
Butyrate acid-base equilibrium constant, K_a_bu Ka, bu K_a_bu 1.5e-5 kmol/m3
Propionate acid-base equilibrium constant, K_a_pro Ka, pro K_a_bu 1.32e-5 kmol/m3
Acetate acid-base equilibrium constant, K_a_ac Ka, ac K_a_ac 1.74e-5 kmol/m3
50% inhibitory concentration of H2S on acetogens, K_I_h2s_ac KI, h2sac K_I_h2s_ac 460e-3 kg/m3
50% inhibitory concentration of H2S on c4 degraders, K_I_h2s_c4 KI, h2sc4 K_I_h2s_c4 481e-3 kg/m3
50% inhibitory concentration of H2S on hydrogenotrophic methanogens, K_I_h2s_h2 KI, h2sh2 K_I_h2s_h2 481e-3 kg/m3
50% inhibitory concentration of H2S on propionate degraders, K_I_h2s_pro KI, h2spro K_I_h2s_pro 481e-3 kg/m3
Phosphorus limitation for inorganic phosphorus, K_S_IP Ks, IP K_S_IP 2e-5 kmol/m3
Lysis rate of phosphorus accumulating organisms, b_PAO bPAO b_PAO 0.2 d − 1
Lysis rate of polyhydroxyalkanoates, b_PHA bPHA b_PHA 0.2 d − 1
Lysis rate of polyphosphates, b_PP bPP b_PP 0.2 d − 1
Yield of acetate on polyhydroxyalkanoates, f_ac_PHA fac, PHA f_ac_PHA 0.4 dimensionless
Yield of butyrate on polyhydroxyalkanoates, f_bu_PHA fbu, PHA f_bu_PHA 0.1 dimensionless
Yield of propionate on polyhydroxyalkanoates, f_pro_PHA fpro, PHA f_pro_PHA 0.4 dimensionless
Yield of valerate on polyhydroxyalkanoates, f_va_PHA fva, PHA f_va_PHA 0.1 dimensionless
Saturation coefficient for acetate, K_A KA K_A 4e-3 kg/m3
Saturation coefficient for polyphosphate, K_PP KPP k_PP 0.32e-3 dimensionless
Rate constant for storage of polyhydroxyalkanoates, q_PHA qPHA q_PHA 3 d − 1
Yield of biomass on phosphate (kmol P/kg COD), Y_PO4 YPO4 Y_PO4 12.903e-3 dimensionless
Potassium coefficient for polyphosphates, K_PP KPP K_PP 1/3 dimensionless
Magnesium coefficient for polyphosphates, Mg_PP MgPP Mg_PP 1/3 dimensionless
Carbon dioxide acid-base equilibrium constant, pK_a_co2 pKa, co2 pK_a_co2 6.35 dimensionless
Inorganic nitrogen acid-base equilibrium constant, pK_a_IN pKa, IN pK_a_IN 9.25 dimensionless

Properties

Description Symbol Variable Index Units
Fluid specific heat capacity cp cp None J/kg/K
Mass density ρ dens_mass [p] kg/m3

Process Rate Equations

Red text indicates the equation has been removed in the Modified ADM1 model, lime text indicates the equation has been added, and blue text indicates the equation has been modified from its base ADM1 implementation.

Description Equation
Disintegration ρ1 = kdisCXc
Hydrolysis of carbohydrates ρ1 = khyd, chCXch
Hydrolysis of proteins ρ2 = khyd, prCXpr
Hydrolysis of lipids ρ3 = khyd, liCXli
Uptake of sugars $\rho_4 = k_{m_{su}} \frac{C_{S_{su}}}{K_{S_{su}}+C_{S_{su}}} C_{X_{su}} \frac{1}{1 + K_{S_{IN}}/C_{S_{IN}}/14} \cdot \frac{1}{1 + K_{S_{IP}}/C_{S_{IP}}/31} I_{pH,aa}$
Uptake of amino acids $\rho_5 = k_{m_{aa}} \frac{C_{S_{aa}}}{K_{S_{aa}}+C_{S_{aa}}} C_{X_{aa}} \frac{1}{1 + K_{S_{IN}}/C_{S_{IN}}/14} \cdot \frac{1}{1 + K_{S_{IP}}/C_{S_{IP}}/31} I_{pH,aa}$
Uptake of long chain fatty acids (LCFAs) $\rho_6 = k_{m_{fa}} \frac{C_{S_{fa}}}{K_{S_{fa}}+C_{S_{fa}}} C_{X_{fa}} \frac{1}{1 + K_{S_{IN}}/C_{S_{IN}}/14} \cdot \frac{1}{1 + C_{S_{h2}}/K_{I,h2_{fa}}} \cdot \frac{1}{1 + K_{S_{IP}}/C_{S_{IP}}/31} I_{pH,aa}$
Uptake of valerate $\rho_7 = k_{m_{c4}} \frac{C_{S_{va}}}{K_{S_{c4}}+C_{S_{va}}} C_{X_{c4}} \frac{C_{S_{va}}}{C_{S_{bu}} + C_{S_{va}}} \cdot \frac{1}{1 + K_{S_{IN}}/C_{S_{IN}}/14} \cdot \frac{1}{1 + C_{S_{h2}}/K_{I,h2_{c4}}} \cdot \frac{1}{1 + K_{S_{IP}}/C_{S_{IP}}/31} I_{pH,aa} I_{h2s, c4}$
Uptake of butyrate $\rho_8 = k_{m_{c4}} \frac{C_{S_{bu}}}{K_{S_{c4}}+C_{S_{bu}}} C_{X_{c4}} \frac{C_{S_{bu}}}{C_{S_{bu}} + C_{S_{va}}} \cdot \frac{1}{1 + K_{S_{IN}}/C_{S_{IN}}/14} \cdot \frac{1}{1 + C_{S_{h2}}/K_{I,h2_{c4}}} \cdot \frac{1}{1 + K_{S_{IP}}/C_{S_{IP}}/31} I_{pH,aa} I_{h2s, c4}$
Uptake of propionate $\rho_9 = k_{m_{pro}} \frac{C_{S_{pro}}}{K_{S_{pro}}+C_{S_{pro}}} C_{X_{pro}} \cdot \frac{1}{1 + K_{S_{IN}}/C_{S_{IN}}/14} \cdot \frac{1}{1 + C_{S_{h2}}/K_{I,h2_{pro}}} \cdot \frac{1}{1 + K_{S_{IP}}/C_{S_{IP}}/31} I_{pH,aa} I_{h2s, pro}$
Uptake of acetate $\rho_{10} = k_{m_{ac}} \frac{C_{S_{ac}}}{K_{S_{ac}}+C_{S_{ac}}} C_{X_{ac}} \cdot \frac{1}{1 + K_{S_{IN}}/C_{S_{IN}}/14} \cdot \frac{1}{1 + C_{NH3}/K_{I,nh3}} \cdot \frac{1}{1 + K_{S_{IP}}/C_{S_{IP}}/31} I_{pH,ac} I_{h2s, ac}$
Uptake of hydrogen $\rho_{11} = k_{m_{h2}} \frac{C_{S_{h2}}}{K_{S_{h2}}+C_{S_{h2}}} C_{X_{h2}} \cdot \frac{1}{1 + K_{S_{IN}}/C_{S_{IN}}/14} \cdot \frac{1}{1 + K_{S_{IP}}/C_{S_{IP}}/31} I_{pH,h2} I_{h2s, h2}$
Decay of X_su ρ12 = kdec, XsuCXsu
Decay of X_aa ρ13 = kdec, XaaCXaa
Decay of X_fa ρ14 = kdec, XfaCXfa
Decay of X_c4 ρ15 = kdec, Xc4CXc4
Decay of X_pro ρ16 = kdec, XproCXpro
Decay of X_ac ρ17 = kdec, XacCXac
Decay of X_h2 ρ18 = kdec, Xh2CXh2
Storage of S_va in X_PHA $\rho_{19} = q_{PHA} \frac{C_{S_{va}}}{K_{A} + C_{S{va}}} \cdot \frac{C_{X_{PP}} / C_{X_{PAO}}}{K_{PP} + \frac{C_{X_{PP}}}{C_{X_{PAO}}}} C_{X_{PAO}} \frac{C_{S_{va}}}{C_{S_{va}} + C_{S_{bu}} + C_{S_{pro}} + C_{S_{ac}}}$
Storage of S_bu in X_PHA $\rho_{20} = q_{PHA} \frac{C_{S_{bu}}}{K_{A} + C_{S{bu}}} \cdot \frac{C_{X_{PP}} / C_{X_{PAO}}}{K_{PP} + \frac{C_{X_{PP}}}{C_{X_{PAO}}}} C_{X_{PAO}} \frac{C_{S_{bu}}}{C_{S_{va}} + C_{S_{bu}} + C_{S_{pro}} + C_{S_{ac}}}$
Storage of S_pro in X_PHA $\rho_{21} = q_{PHA} \frac{C_{S_{pro}}}{K_{A} + C_{S{pro}}} \cdot \frac{C_{X_{PP}} / C_{X_{PAO}}}{K_{PP} + \frac{C_{X_{PP}}}{C_{X_{PAO}}}} C_{X_{PAO}} \frac{C_{S_{pro}}}{C_{S_{va}} + C_{S_{bu}} + C_{S_{pro}} + C_{S_{ac}}}$
Storage of S_ac in X_PHA $\rho_{22} = q_{PHA} \frac{C_{S_{ac}}}{K_{A} + C_{S{ac}}} \cdot \frac{C_{X_{PP}} / C_{X_{PAO}}}{K_{PP} + \frac{C_{X_{PP}}}{C_{X_{PAO}}}} C_{X_{PAO}} \frac{C_{S_{ac}}}{C_{S_{va}} + C_{S_{bu}} + C_{S_{pro}} + C_{S_{ac}}}$
Lysis of X_PAO ρ23 = bPAOCXPAO
Lysis of X_PP ρ24 = bPPCXPP
Lysis of X_PHA ρ25 = bPHACXPHA

Additional Variables

Description Symbol Parameter Value at 20 C Units
pH of solution pH pH 7 dimensionless
Mass concentration of valerate, va- Cva conc_mass_va 0.011 kg/m3
Mass concentration of butyrate, bu- Cbu conc_mass_bu 0.013 kg/m3
Mass concentration of propionate, pro- Cpro conc_mass_pro 0.016 kg/m3
Mass concentration of acetate, ac- Cac conc_mass_ac 0.2 kg/m3
Molar concentration of bicarbonate, HCO3 Mhco3 conc_mol_hco3 0.14 kmol/m3
Molar concentration of ammonia, NH3 Mnh3 conc_mol_nh3 0.0041 kmol/m3
Molar concentration of carbon dioxide, CO2 Mco2 conc_mol_co2 0.0099 kmol/m3
Molar concentration of ammonium, NH4 Mnh4 conc_mol_nh4 0.1261 kmol/m3
Molar concentration of magnesium, Mg MMg conc_mol_Mg 4.5822e-5 kmol/m3
Molar concentration of potassium, K MK conc_mol_K 0.010934 kmol/m3

Additional Constraints

Lime text indicates the equation has been added, and blue text indicates the equation has been modified from its base ADM1 implementation.

Description Equation
Water dissociation constant constraint $log(10^{-pK_{W}}) = log(10^{-14}) + (\frac{55900}{R} * (\frac{1}{T_{ref}} - \frac{1}{T}))$
CO2 acid-base equilibrium constraint $log(10^{-pK_{a,co2}}) = log(10^{-6.35}) + (\frac{7646}{R} * (\frac{1}{T_{ref}} - \frac{1}{T}))$
Nitrogen acid-base equilibrium constraint $log(10^{-pK_{a,IN}}) = log(10^{-9.25}) + (\frac{51965}{R} * (\frac{1}{T_{ref}} - \frac{1}{T}))$
pH of solution pH =  − log(SH)
Mass concentration of valerate, va- $C_{va,ref} = C_{va} (1 + \frac{S_{H}}{K_{a,va}})$
Mass concentration of butyrate, bu- $C_{bu,ref} = C_{bu} (1 + \frac{S_{H}}{K_{a,bu}})$
Mass concentration of propionate, pro- $C_{pro,ref} = C_{pro} (1 + \frac{S_{H}}{K_{a,pro}})$
Mass concentration of acetate, ac- $C_{ac,ref} = C_{ac} (1 + \frac{S_{H}}{K_{a,ac}})$
Molar concentration of bicarbonate, HCO3 pKa, co2 = log(Mco2) − log(Mhco3) + pH
Molar concentration of ammonia, NH3 pKa, IN = log(Mnh4) − log(Mnh3) + pH
Molar concentration of carbon dioxide, CO2 $M_{co2} = \frac{C_{S_{IC},ref}}{12} - M_{hco3}$
Molar concentration of ammonium, NH4+ $M_{nh4} = \frac{C_{S_{IN},ref}}{14} - M_{nh3}$
Molar concentration of hydrogen, H+ $S_{H} = M_{hco3} + \frac{C_{ac}}{64} + \frac{C_{pro}}{112} + \frac{C_{bu}}{160} + \frac{C_{va}}{208} + 10^{pH - pK_{W}} + M_{a} - M_{c} - M_{nh4} - M_{Mg} - M_{K}$
Molar concentration of magnesium, Mg $M_{Mg} = \frac{C_{X_{PP},ref}}{300.41}$
Molar concentration of potassium, K $M_{K} = \frac{C_{X_{PP},ref}}{300.41}$

The rules for inhibition of amino-acid-utilizing microorganisms (IpH, aa), acetate-utilizing microorganisms (IpH, ac), hydrogen-utilizing microorganisms (IpH, h2) are:

$$\begin{aligned} I_{pH,aa}= \begin{cases} \exp{(-3 (\frac{pH - pH_{UL,aa}}{pH_{UL,aa} - pH_{LL,aa}})^2)} & \text{for } pH \le pH_{UL,aa}\\\ 1 & \text{for } pH > pH_{UL,aa} \end{cases} \end{aligned}$$$$\begin{aligned} I_{pH,ac}= \begin{cases} \exp{(-3 (\frac{pH - pH_{UL,ac}}{pH_{UL,ac} - pH_{LL,ac}})^2)} & \text{for } pH \le pH_{UL,ac}\\\ 1 & \text{for } pH > pH_{UL,ac} \end{cases} \end{aligned}$$$$\begin{aligned} I_{pH,h2}= \begin{cases} \exp{(-3 (\frac{pH - pH_{UL,h2}}{pH_{UL,h2} - pH_{LL,h2}})^2)} & \text{for } pH \le pH_{UL,h2}\\\ 1 & \text{for } pH > pH_{UL,h2} \end{cases} \end{aligned}$$

The rules for inhibition related to secondary substrate (IIN, lim), hydrogen inhibition attributed to long chain fatty acids (Ih2, fa), hydrogen inhibition attributed to valerate and butyrate uptake (Ih2, c4), hydrogen inhibition attributed to propionate uptake (Ih2, pro), ammonia inibition attributed to acetate uptake (Inh3), are:

$$I_{IN,lim} = \frac{1}{1 + \frac{K_{S_{IN}}}{C_{S_{IN}}/14}}$$$$I_{h2, fa}= \frac{1}{1 + \frac{C_{S_{h2}}}{K_{I,h2,fa}}}$$$$I_{h2, c4}= \frac{1}{1 + \frac{C_{S_{h2}}}{K_{I,h2,c4}}}$$$$I_{h2, pro}= \frac{1}{1 + \frac{C_{S_{h2}}}{K_{I,h2,pro}}}$$$$I_{nh3}= \frac{1}{1 + \frac{M_{nh3}}{K_{I,nh3}}}$$

The rules for hydrogen sulfide inhibition factors are shown below; however, since Zh2s is assumed to be 0, all of these inhibition factors are negligible.

$$I_{h2s, ac} = \frac{1}{1 + \frac{Z_{h2s}}{K_{I,h2s,ac}}}$$$$I_{h2s, c4}= \frac{1}{1 + \frac{Z_{h2s}}{K_{I,h2s,c4}}}$$$$I_{h2s, h2}= \frac{1}{1 + \frac{Z_{h2s}}{K_{I,h2s,h2}}}$$$$I_{h2s, pro}= \frac{1}{1 + \frac{Z_{h2s}}{K_{I,h2s,pro}}}$$

Class Documentation

watertap.property_models.anaerobic_digestion.modified_adm1_properties

ModifiedADM1ParameterBlock

ModifiedADM1ParameterData

_ModifiedADM1StateBlock

ModifiedADM1StateBlockData

watertap.property_models.anaerobic_digestion.adm1_properties_vapor

ADM1_vaporParameterBlock

ADM1_vaporParameterData

_ADM1_vaporStateBlock

ADM1_vaporStateBlockData

watertap.property_models.anaerobic_digestion.modified_adm1_reactions

ModifiedADM1ReactionParameterBlock

ModifiedADM1ReactionParameterData

_ModifiedADM1ReactionBlock

ModifiedADM1ReactionBlockData

References

[1] Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H.A. and Vavilin, V.A., 2002. The IWA anaerobic digestion model no 1 (ADM1). Water Science and technology, 45(10), pp.65-73. https://iwaponline.com/wst/article-abstract/45/10/65/6034

[2] Rosen, C. and Jeppsson, U., 2006. Aspects on ADM1 Implementation within the BSM2 Framework. Department of Industrial Electrical Engineering and Automation, Lund University, Lund, Sweden, pp.1-35. https://www.iea.lth.se/WWTmodels_download/TR_ADM1.pdf

[3] X. Flores-Alsina, K. Solon, C.K. Mbamba, S. Tait, K.V. Gernaey, U. Jeppsson, D.J. Batstone, 2016. Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes, Water Research. 95 370-382. https://www.sciencedirect.com/science/article/pii/S0043135416301397