Skip to content

wiseman/mavelous

Repository files navigation

Mavelous

Mavelous is an open source browser-based ground control station (GCS) for drones/UAVs/micro air vehicles.

Try the online demo.

Mavelous can be used with any vehicle that speaks the MAVLink 1.0 protocol. It has been tested with Arducopter and ArduPlane.

Here's a screenshot of Mavelous running in a desktop web browser:

Screenshot of Mavelous running in a desktop browser

Mavelous running on an iPhone:

Screenshot of Mavelous running on an iPhone browser

Here's a video of Mavelous being used in the field with an iPad to fly an ArduCopter:

Mavelous Youtube Demo Video

http://www.youtube.com/watch?v=QNql3n4C8iA

Features

  • Situational awareness. Mavelous will show you a vehicle's current position on a map. It also has a primary flight display that displays attitude, speed and altitude.

  • Tap-the-map navigation. You can double tap on the map, and the vehicle will switch to GUIDED mode and fly to that position.

  • Flight mode. You can arm and disarm the vehicle, and you can put it into LOITER, RTL, or LAND mode.

Installation

Mavelous is written in Python, and it depends on mavlink, CherryPy and Flask.

First clone the mavelous and mavlink repositories:

$ cd src
$ git clone https://github.com/wiseman/mavlink  # Fork required to fix bugs
$ git clone git@github.com:wiseman/mavelous.git

Then install CherryPy, Flask and pyserial. The easiest way is with pip:

$ pip install cherrypy flask pyserial

How to run it

Online Demo

The online demo of Mavelous runs completely within the browser. The simulated drone is very low fidelity and simply follows a fixed path. It will not respond to navigation commands such as guided mode.

You can also run the demo on your own machine by cloning the repository and opening the html page in your browser via the filesystem. The index.html file can be found at:

mavelous/modules/lib/mavelous_web/index.html

With a real drone

  1. Connect your ArduCopter or ArduPlane to your computer with an Xbee or 3DR Radio. Power on the vehicle.

  2. Start mavproxy, specifying the serial port and data rate. On Linux, the serial port is probably named something like /dev/ttyUSB0 or /dev/ttyUSB1. For 3DR Radios, the data rate is usually 57600. For example:

    $ cd src/mavelous
    $ python mavproxy.py --module mavelous --master=/dev/ttyUSB0 --baud=57600
    

You can then point at browser at http://localhost:9999.

You'll be able to use the Mavelous interface to control Guided mode once in flight. Find out more about guided mode on ArduCopter.

Software in the loop simulation ArduCopter

  1. Compile the ArduCopter firmware for Software in the loop similation (SITL). You'll need to use the ardupilot-mega project's Makefile build system: see details on the ardupilot-mega wiki.

    $ make sitl
    
  2. Run the ArduCopter executable in desktop mode. For example:

    $ ~/ardupilot-mega/tmp/ArduCopter.build/ArduCopter.elf -H 20
    

    On some systems, this directory will be found at /tmp/ArduCopter.build/

  3. Start the simulated multicopter. For example:

    $ python ~/ardupilot-mega/Tools/autotest/pysim/sim_multicopter.py \
      --frame=+ --rate=400 --home=34.092047,-118.267136,20,0 --wind=6,45,.3
    
  4. Start mavproxy:

    $ python mavproxy.py --master=tcp:127.0.0.1:5760 --out=127.0.0.1:14550 \
      --aircraft=test.ArduCopter --sitl=127.0.0.1:5501 --out=127.0.0.1:19550 \
      --quadcopter --streamrate=5 --module mavelous
    

    A web browser will open showing you the Mavelous interface, or you can point a browser to http://localhost:9999.

  5. Take off. Soon, arducopter may support automated take-off. Until then:

    GUIDED> switch 6   # Stabilize mode
    GUIDED> rc 3 1510  # Take-off throttle
    

Architecture

    *  Drone
    |
*---+---*
    |
    *

    ^
    |
    | Radio link
    |
    V

.............................................
.  Mavelous                                 .
.                                           .
.  +--------+          +-----------------+  .
.  |        |   HTTP   | Front end, runs |  .
.  | Server |<-------->| in browser      |  .
.  |        |          |                 |  .
.  +--------+          +-----------------+  .
.............................................

Mavelous has two main parts:

  1. Front end. This is the HTML application that runs in a browser. It uses many HTML5 features, so you'll need a reasonably modern browser.

  2. Server. The server manages communication between the front end and the drone. It has a web server that talks to the front end, and it sends and receives drone commands using a wireless modem (like an XBee radio or a 3D Robotics radio).

The front end and the server can run on the same computer, or on two different computers.

The server is written in Python, and probably requires a laptop or netbook. The front end is written in HTML/CSS/Javascript, and can run on anything with a web browser, including phones and tablets.

Why

Portability. Controlling a drone with an iPad is kind of awesome, and there are currently no open-source ground control stations that can run on an iPhone or iPad--Mavelous can (at least the front end can).

The most popular ArduCopter GCS, APM Mission Planner, is primarily a Windows application. It can run under OS X and Linux with Mono, but the experience is not always smooth.

The goal of Mavelous is to have a highly portable GCS that can talk to anything that speaks the MAVLink protocol (and hopefully ROS devices, too, some day).

Feature status

Currently Mavelous is capable of monitoring and guiding a drone in flight.

  • You can see basic flight data (speed, altitude, attitude) on the primary flight display.
  • You can double click/tap on the map to send the drone to that location.
  • Multiple users can control the same drone.
  • Arm/Disarm, loiter, and land an ArduCopter (or other drones that obey Mavlink Navigation Commands).

We're working to add the following features soon:

  • Control auto takeoff
  • Mission creation and editing
  • Offline support (map caching)

I'd like to add these features:

  • Multi-vehicle control

Mailing list

There is a public mailing list for Mavelous users and developers.

Development

To generate HTML files from templates, generate javascript dependencies (mavelous-deps.js) and minify/compile javascript:

$ make

To lint the code:

$ make lint

To fix some lint issues automatically:

$ make lintfix

To regenerate mavelous-deps.js:

$ make deps

Acknowledgments

The Mavelous backend is based on Mavproxy,a command line ground station by Andrew Tridgell.

Mavelous uses open source code from the following projects: Leaflet.js, Backbone.js, Bootstrap, jQuery, Underscore.js, Kinetic.js, Google Closure tools and others.

License

Mavelous is covered by the MIT license, see the accompanying file LICENSE.md for details.

This repository contains additional code that may be covered by other licenses, including MAVProxy, which uses the GPL license.

About

multi-platform ground station for drones that speak the MAVLink protocol

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •