Skip to content

Latest commit

 

History

History
1285 lines (881 loc) · 52.8 KB

typeobj.rst

File metadata and controls

1285 lines (881 loc) · 52.8 KB

c

类型对象

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the :cPyTypeObject structure. Type objects can be handled using any of the :cPyObject_\* or :cPyType_\* functions, but do not offer much that's interesting to most Python applications. These objects are fundamental to how objects behave, so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores a large number of values, mostly C function pointers, each of which implements a small part of the type's functionality. The fields of the type object are examined in detail in this section. The fields will be described in the order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc, intintargfunc, intobjargproc, intintobjargproc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, reprfunc, hashfunc

The structure definition for :cPyTypeObject can be found in Include/object.h. For convenience of reference, this repeats the definition found there:

../includes/typestruct.h

The type object structure extends the :cPyVarObject structure. The ob_size field is used for dynamic types (created by type_new, usually called from a class statement). Note that :cPyType_Type (the metatype) initializes tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

These fields are only present when the macro Py_TRACE_REFS is defined. Their initialization to NULL is taken care of by the PyObject_HEAD_INIT macro. For statically allocated objects, these fields always remain NULL. For dynamically allocated objects, these two fields are used to link the object into a doubly-linked list of all live objects on the heap. This could be used for various debugging purposes; currently the only use is to print the objects that are still alive at the end of a run when the environment variable PYTHONDUMPREFS is set.

These fields are not inherited by subtypes.

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all instances have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size is tp_basicsize plus N times tp_itemsize, where N is the "length" of the object. The value of N is typically stored in the instance's ob_size field. There are exceptions: for example, ints use a negative ob_size to indicate a negative number, and N is abs(ob_size) there. Also, the presence of an ob_size field in the instance layout doesn't mean that the instance structure is variable-length (for example, the structure for the list type has fixed-length instances, yet those instances have a meaningful ob_size field).

The basic size includes the fields in the instance declared by the macro :cPyObject_HEAD or :cPyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the _ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The basic size does not include the GC header size.

These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is generally not safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by the value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize is sizeof(double). It is the programmer's responsibility that tp_basicsize is a multiple of sizeof(double) (assuming this is the alignment requirement for double).

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal use only. They are documented here for completeness. None of these fields are inherited by subtypes.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate any assumptions of the library.

Number Object Structures

Amaury Forgeot d'Arc

Mapping Object Structures

Amaury Forgeot d'Arc

Sequence Object Structures

Amaury Forgeot d'Arc

Buffer Object Structures

Greg J. Stein <greg@lyra.org>

Benjamin Peterson

Stefan Krah