Skip to content

Latest commit

 

History

History
464 lines (322 loc) · 13 KB

related.rst

File metadata and controls

464 lines (322 loc) · 13 KB

Related projects

h2 { display: none; }

xtensor-python

xtensor-python

The xtensor-python project provides the implementation of container types compatible with xtensor's expression system, pyarray and pytensor which effectively wrap numpy arrays, allowing operating on numpy arrays in-place.

Example 1: Use an algorithm of the C++ library on a numpy array in-place

C++ code

#include <numeric>                        // Standard library import for std::accumulate
#include "pybind11/pybind11.h"            // Pybind11 import to define Python bindings
#include "xtensor/xmath.hpp"              // xtensor import for the C++ universal functions
#define FORCE_IMPORT_ARRAY                // numpy C api loading
#include "xtensor-python/pyarray.hpp"     // Numpy bindings

double sum_of_sines(xt::pyarray<double> &m)
{
    auto sines = xt::sin(m);
    // sines does not actually hold any value
    return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
}

PYBIND11_PLUGIN(xtensor_python_test)
{
    xt::import_numpy();
    pybind11::module m("xtensor_python_test", "Test module for xtensor python bindings");

    m.def("sum_of_sines", sum_of_sines,
        "Sum the sines of the input values");

    return m.ptr();
}

Python code

import numpy as np
import xtensor_python_test as xt

a = np.arange(15).reshape(3, 5)
s = xt.sum_of_sines(v)
s

Outputs

1.2853996391883833

Example 2: Create a universal function from a C++ scalar function

C++ code

#include "pybind11/pybind11.h"
#define FORCE_IMPORT_ARRAY
#include "xtensor-python/pyvectorize.hpp"
#include <numeric>
#include <cmath>

namespace py = pybind11;

double scalar_func(double i, double j)
{
    return std::sin(i) - std::cos(j);
}

PYBIND11_PLUGIN(xtensor_python_test)
{
    xt::import_numpy();
    py::module m("xtensor_python_test", "Test module for xtensor python bindings");

    m.def("vectorized_func", xt::pyvectorize(scalar_func), "");

    return m.ptr();
}

Python code

import numpy as np
import xtensor_python_test as xt

x = np.arange(15).reshape(3, 5)
y = [1, 2, 3, 4, 5]
z = xt.vectorized_func(x, y)
z

Outputs

[[-0.540302,  1.257618,  1.89929 ,  0.794764, -1.040465],
 [-1.499227,  0.136731,  1.646979,  1.643002,  0.128456],
 [-1.084323, -0.583843,  0.45342 ,  1.073811,  0.706945]]

xtensor-python-cookiecutter

xtensor-python-cookiecutter

The xtensor-python-cookiecutter project helps extension authors create Python extension modules making use of xtensor.

It takes care of the initial work of generating a project skeleton with

  • A complete setup.py compiling the extension module

A few examples included in the resulting project including

  • A universal function defined from C++
  • A function making use of an algorithm from the STL on a numpy array
  • Unit tests
  • The generation of the HTML documentation with sphinx

xtensor-julia

xtensor-julia

The xtensor-julia project provides the implementation of container types compatible with xtensor's expression system, jlarray and jltensor which effectively wrap Julia arrays, allowing operating on Julia arrays in-place.

Example 1: Use an algorithm of the C++ library with a Julia array

C++ code

#include <numeric>                        // Standard library import for std::accumulate
#include <cxx_wrap.hpp>                   // CxxWrap import to define Julia bindings
#include "xtensor-julia/jltensor.hpp"     // Import the jltensor container definition
#include "xtensor/xmath.hpp"              // xtensor import for the C++ universal functions

double sum_of_sines(xt::jltensor<double, 2> m)
{
    auto sines = xt::sin(m);  // sines does not actually hold values.
    return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
}

JULIA_CPP_MODULE_BEGIN(registry)
    cxx_wrap::Module mod = registry.create_module("xtensor_julia_test");
    mod.method("sum_of_sines", sum_of_sines);
JULIA_CPP_MODULE_END

Julia code

using xtensor_julia_test

arr = [[1.0 2.0]
       [3.0 4.0]]

s = sum_of_sines(arr)
s

Outputs

1.2853996391883833

Example 2: Create a numpy-style universal function from a C++ scalar function

C++ code

#include <cxx_wrap.hpp>
#include "xtensor-julia/jlvectorize.hpp"

double scalar_func(double i, double j)
{
    return std::sin(i) - std::cos(j);
}

JULIA_CPP_MODULE_BEGIN(registry)
    cxx_wrap::Module mod = registry.create_module("xtensor_julia_test");
    mod.method("vectorized_func", xt::jlvectorize(scalar_func));
JULIA_CPP_MODULE_END

Julia code

using xtensor_julia_test

x = [[ 0.0  1.0  2.0  3.0  4.0]
     [ 5.0  6.0  7.0  8.0  9.0]
     [10.0 11.0 12.0 13.0 14.0]]
y = [1.0, 2.0, 3.0, 4.0, 5.0]
z = xt.vectorized_func(x, y)
z

Outputs

[[-0.540302  1.257618  1.89929   0.794764 -1.040465],
 [-1.499227  0.136731  1.646979  1.643002  0.128456],
 [-1.084323 -0.583843  0.45342   1.073811  0.706945]]

xtensor-julia-cookiecutter

xtensor-julia-cookiecutter

The xtensor-julia-cookiecutter project helps extension authors create Julia extension modules making use of xtensor.

It takes care of the initial work of generating a project skeleton with

  • A complete read-to-use Julia package

A few examples included in the resulting project including

  • A numpy-style universal function defined from C++
  • A function making use of an algorithm from the STL on a numpy array
  • Unit tests
  • The generation of the HTML documentation with sphinx

xtensor-r

xtensor-r

The xtensor-r project provides the implementation of container types compatible with xtensor's expression system, rarray and rtensor which effectively wrap R arrays, allowing operating on R arrays in-place.

Example 1: Use an algorithm of the C++ library on a R array in-place

C++ code

#include <numeric>                    // Standard library import for std::accumulate
#include "xtensor/xmath.hpp"          // xtensor import for the C++ universal functions
#include "xtensor-r/rarray.hpp"       // R bindings
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::plugins(cpp14)]]

// [[Rcpp::export]]
double sum_of_sines(xt::rarray<double>& m)
{
    auto sines = xt::sin(m);  // sines does not actually hold values.
    return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
}

R code

v <- matrix(0:14, nrow=3, ncol=5)
s <- sum_of_sines(v)
s

Outputs

1.2853996391883833

xtensor-blas

xtensor-blas

The xtensor-blas project is an extension to the xtensor library, offering bindings to BLAS and LAPACK libraries through cxxblas and cxxlapack from the FLENS project. xtensor-blas powers the xt::linalg functionalities, which are the counterpart to numpy's linalg module.

xtensor-fftw

xtensor-fftw

The xtensor-fftw project is an extension to the xtensor library, offering bindings to the fftw library. xtensor-fftw powers the xt::fftw functionalities, which are the counterpart to numpy's fft module.

Example 1: Calculate a derivative in Fourier space

Calculate the derivative of a (discretized) field in Fourier space, e.g. a sine shaped field sin:

C++ code

#include <xtensor-fftw/basic.hpp>   // rfft, irfft
#include <xtensor-fftw/helper.hpp>  // rfftscale
#include <xtensor/xarray.hpp>
#include <xtensor/xbuilder.hpp>     // xt::arange
#include <xtensor/xmath.hpp>        // xt::sin, cos
#include <complex>
#include <xtensor/xio.hpp>

// generate a sinusoid field
double dx = M_PI / 100;
xt::xarray<double> x = xt::arange(0., 2 * M_PI, dx);
xt::xarray<double> sin = xt::sin(x);

// transform to Fourier space
auto sin_fs = xt::fftw::rfft(sin);

// multiply by i*k
std::complex<double> i {0, 1};
auto k = xt::fftw::rfftscale<double>(sin.shape()[0], dx);
xt::xarray<std::complex<double>> sin_derivative_fs = xt::eval(i * k * sin_fs);

// transform back to normal space
auto sin_derivative = xt::fftw::irfft(sin_derivative_fs);

std::cout << "x:              " << x << std::endl;
std::cout << "sin:            " << sin << std::endl;
std::cout << "cos:            " << xt::cos(x) << std::endl;
std::cout << "sin_derivative: " << sin_derivative << std::endl;

Outputs

x:              { 0.      ,  0.031416,  0.062832,  0.094248, ...,  6.251769}
sin:            { 0.000000e+00,  3.141076e-02,  6.279052e-02,  9.410831e-02, ..., -3.141076e-02}
cos:            { 1.000000e+00,  9.995066e-01,  9.980267e-01,  9.955620e-01, ...,  9.995066e-01}
sin_derivative: { 1.000000e+00,  9.995066e-01,  9.980267e-01,  9.955620e-01, ...,  9.995066e-01}

xtensor-io

xtensor-io

The xtensor-io project is an extension to the xtensor library for reading and writing image, sound and npz file formats to and from xtensor data structures.

xtensor-ros

xtensor-ros

The xtensor-ros project is an extension to the xtensor library providing helper functions to easily send and receive xtensor and xarray datastructures as ROS messages.

xsimd

xsimd

The xsimd project provides a unified API for making use of the SIMD features of modern preprocessors for C++ library authors. It also provides accelerated implementation of common mathematical functions operating on batches.

xsimd is an optional dependency to xtensor which enable SIMD vectorization of xtensor operations. This feature is enabled with the XTENSOR_USE_XSIMD compilation flag, which is set to false by default.

xtl

xtl

The xtl project, the only dependency of xtensor is a C++ template library holding the implementation of basic tools used across the libraries in the ecosystem.

xframe

xframe

The xframe project provides multi-dimensional labeled arrays and a data frame for C++, based on xtensor and xtl.

xframe provides

  • an extensible expression system enabling lazy broadcasting.
  • an API following the idioms of the C++ standard library.
  • tools to manipulate n-dimensional labeled tensor expressions.

The API of xframe is inspired by xarray, a Python package implementing labelled multi-dimensional arrays and datasets.

z5

The z5 project implements the zarr and n5 storage specifications in C++. Both specifications describe chunked nd-array storage similar to HDF5, but use the filesystem to store chunks. This design allows for parallel write access and efficient cloud based storage, crucial requirements in modern big data applications. The project uses xtensor to represent arrays in memory and also provides a python wrapper based on xtensor-python.