Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

NAN Loss for provided model #19

Closed
yix081 opened this issue Feb 19, 2021 · 8 comments
Closed

NAN Loss for provided model #19

yix081 opened this issue Feb 19, 2021 · 8 comments

Comments

@yix081
Copy link

yix081 commented Feb 19, 2021

I trained the model with the following two scripts. Both result nan loss after 1 epoch training. Any thought to address this issue?

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./distributed_train.sh 8 path/to/data --model T2t_vit_7 -b 64 --lr 1e-3 --weight-decay .03 --cutmix 0.0 --reprob 0.25 --img-size 224

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./distributed_train.sh 8 path/to/data --model T2t_vit_14 -b 64 --lr 5e-4 --weight-decay .05 --img-size 224

Training in distributed mode with multiple processes, 1 GPU per process. Process 0, total 8.
Training in distributed mode with multiple processes, 1 GPU per process. Process 6, total 8.
Training in distributed mode with multiple processes, 1 GPU per process. Process 7, total 8.
Training in distributed mode with multiple processes, 1 GPU per process. Process 3, total 8.
adopt performer encoder for tokens-to-token
adopt performer encoder for tokens-to-token
adopt performer encoder for tokens-to-token
adopt performer encoder for tokens-to-token
adopt performer encoder for tokens-to-token
adopt performer encoder for tokens-to-token
Training in distributed mode with multiple processes, 1 GPU per process. Process 1, total 8.
adopt performer encoder for tokens-to-token
Model T2t_vit_14 created, param count: 21545550
Data processing configuration for current model + dataset:
input_size: (3, 224, 224)
interpolation: bicubic
mean: (0.485, 0.456, 0.406)
std: (0.229, 0.224, 0.225)
crop_pct: 0.9
Using native Torch AMP. Training in mixed precision.
Using native Torch DistributedDataParallel.
Scheduled epochs: 310
Train: 0 [ 0/2502 ( 0%)] Loss: 7.023479 (7.0235) Time: 3.680s, 139.14/s (3.680s, 139.14/s) LR: 1.000e-06 Data: 1.776 (1.776)
Reducer buckets have been rebuilt in this iteration.
Reducer buckets have been rebuilt in this iteration.
Reducer buckets have been rebuilt in this iteration.
Reducer buckets have been rebuilt in this iteration.
Reducer buckets have been rebuilt in this iteration.
Reducer buckets have been rebuilt in this iteration.
Reducer buckets have been rebuilt in this iteration.
Reducer buckets have been rebuilt in this iteration.
Train: 0 [ 50/2502 ( 2%)] Loss: 6.971423 (6.9975) Time: 0.323s, 1586.02/s (0.385s, 1330.47/s) LR: 1.000e-06 Data: 0.006 (0.041)
Train: 0 [ 100/2502 ( 4%)] Loss: 6.978786 (6.9912) Time: 0.305s, 1679.64/s (0.351s, 1457.64/s) LR: 1.000e-06 Data: 0.006 (0.024)
Train: 0 [ 150/2502 ( 6%)] Loss: 6.975621 (6.9873) Time: 0.300s, 1705.67/s (0.340s, 1507.75/s) LR: 1.000e-06 Data: 0.005 (0.018)
Train: 0 [ 200/2502 ( 8%)] Loss: 6.966157 (6.9831) Time: 0.360s, 1422.92/s (0.334s, 1530.97/s) LR: 1.000e-06 Data: 0.006 (0.015)
Train: 0 [ 250/2502 ( 10%)] Loss: 6.980019 (6.9826) Time: 0.309s, 1657.73/s (0.331s, 1545.27/s) LR: 1.000e-06 Data: 0.005 (0.013)
Train: 0 [ 300/2502 ( 12%)] Loss: 6.964942 (6.9801) Time: 0.327s, 1565.87/s (0.329s, 1556.59/s) LR: 1.000e-06 Data: 0.006 (0.012)
Train: 0 [ 350/2502 ( 14%)] Loss: 6.957265 (6.9772) Time: 0.332s, 1541.96/s (0.327s, 1563.37/s) LR: 1.000e-06 Data: 0.005 (0.011)
Train: 0 [ 400/2502 ( 16%)] Loss: 6.953742 (6.9746) Time: 0.318s, 1609.71/s (0.326s, 1570.11/s) LR: 1.000e-06 Data: 0.006 (0.011)
Train: 0 [ 450/2502 ( 18%)] Loss: 6.967467 (6.9739) Time: 0.309s, 1658.46/s (0.325s, 1573.87/s) LR: 1.000e-06 Data: 0.007 (0.010)
Train: 0 [ 500/2502 ( 20%)] Loss: 6.970360 (6.9736) Time: 0.322s, 1590.08/s (0.325s, 1577.36/s) LR: 1.000e-06 Data: 0.007 (0.010)
Train: 0 [ 550/2502 ( 22%)] Loss: 6.931087 (6.9700) Time: 0.313s, 1637.96/s (0.324s, 1579.20/s) LR: 1.000e-06 Data: 0.005 (0.009)
Train: 0 [ 600/2502 ( 24%)] Loss: 6.939621 (6.9677) Time: 0.329s, 1555.19/s (0.324s, 1580.93/s) LR: 1.000e-06 Data: 0.007 (0.009)
Train: 0 [ 650/2502 ( 26%)] Loss: 6.943333 (6.9660) Time: 0.318s, 1607.70/s (0.324s, 1582.42/s) LR: 1.000e-06 Data: 0.005 (0.009)
Train: 0 [ 700/2502 ( 28%)] Loss: 6.940698 (6.9643) Time: 0.316s, 1621.93/s (0.323s, 1584.56/s) LR: 1.000e-06 Data: 0.006 (0.009)
Train: 0 [ 750/2502 ( 30%)] Loss: 6.941026 (6.9628) Time: 0.323s, 1584.28/s (0.323s, 1586.07/s) LR: 1.000e-06 Data: 0.006 (0.008)
Train: 0 [ 800/2502 ( 32%)] Loss: 6.936088 (6.9612) Time: 0.310s, 1649.05/s (0.323s, 1587.13/s) LR: 1.000e-06 Data: 0.006 (0.008)
Train: 0 [ 850/2502 ( 34%)] Loss: 6.931849 (6.9596) Time: 0.308s, 1662.24/s (0.322s, 1588.20/s) LR: 1.000e-06 Data: 0.005 (0.008)
Train: 0 [ 900/2502 ( 36%)] Loss: 6.947849 (6.9590) Time: 0.320s, 1599.60/s (0.322s, 1589.06/s) LR: 1.000e-06 Data: 0.005 (0.008)
Train: 0 [ 950/2502 ( 38%)] Loss: 6.928242 (6.9575) Time: 0.308s, 1659.89/s (0.322s, 1590.35/s) LR: 1.000e-06 Data: 0.005 (0.008)
Train: 0 [1000/2502 ( 40%)] Loss: 6.926805 (6.9560) Time: 0.310s, 1649.80/s (0.322s, 1591.55/s) LR: 1.000e-06 Data: 0.006 (0.008)
Train: 0 [1050/2502 ( 42%)] Loss: 6.950564 (6.9557) Time: 0.308s, 1660.43/s (0.322s, 1592.16/s) LR: 1.000e-06 Data: 0.005 (0.008)
Train: 0 [1100/2502 ( 44%)] Loss: 6.930144 (6.9546) Time: 0.300s, 1707.17/s (0.321s, 1593.30/s) LR: 1.000e-06 Data: 0.005 (0.008)
Train: 0 [1150/2502 ( 46%)] Loss: 6.919596 (6.9532) Time: 0.331s, 1547.59/s (0.321s, 1593.54/s) LR: 1.000e-06 Data: 0.006 (0.007)
Train: 0 [1200/2502 ( 48%)] Loss: 6.922656 (6.9520) Time: 0.310s, 1652.26/s (0.321s, 1594.28/s) LR: 1.000e-06 Data: 0.006 (0.007)
Train: 0 [1250/2502 ( 50%)] Loss: 6.919957 (6.9507) Time: 0.311s, 1645.52/s (0.321s, 1595.21/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1300/2502 ( 52%)] Loss: 6.930165 (6.9500) Time: 0.333s, 1539.73/s (0.321s, 1595.62/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1350/2502 ( 54%)] Loss: 6.918827 (6.9488) Time: 0.331s, 1544.88/s (0.321s, 1596.13/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1400/2502 ( 56%)] Loss: 6.923580 (6.9480) Time: 0.311s, 1644.41/s (0.321s, 1596.67/s) LR: 1.000e-06 Data: 0.006 (0.007)
Train: 0 [1450/2502 ( 58%)] Loss: 6.924307 (6.9472) Time: 0.333s, 1538.95/s (0.321s, 1597.32/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1500/2502 ( 60%)] Loss: 6.909927 (6.9460) Time: 0.309s, 1659.58/s (0.320s, 1597.74/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1550/2502 ( 62%)] Loss: 6.924455 (6.9453) Time: 0.339s, 1512.00/s (0.320s, 1598.03/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1600/2502 ( 64%)] Loss: 6.931414 (6.9449) Time: 0.315s, 1623.24/s (0.320s, 1598.55/s) LR: 1.000e-06 Data: 0.006 (0.007)
Train: 0 [1650/2502 ( 66%)] Loss: 6.916759 (6.9441) Time: 0.332s, 1542.18/s (0.320s, 1599.07/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1700/2502 ( 68%)] Loss: 6.941891 (6.9440) Time: 0.314s, 1632.83/s (0.320s, 1599.53/s) LR: 1.000e-06 Data: 0.006 (0.007)
Train: 0 [1750/2502 ( 70%)] Loss: 6.922241 (6.9434) Time: 0.312s, 1640.83/s (0.320s, 1599.91/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1800/2502 ( 72%)] Loss: 6.918221 (6.9427) Time: 0.315s, 1625.92/s (0.320s, 1600.40/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1850/2502 ( 74%)] Loss: 6.903537 (6.9417) Time: 0.322s, 1587.80/s (0.320s, 1600.59/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1900/2502 ( 76%)] Loss: 6.934650 (6.9415) Time: 0.315s, 1623.17/s (0.320s, 1601.00/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [1950/2502 ( 78%)] Loss: 6.916628 (6.9409) Time: 0.315s, 1625.91/s (0.320s, 1601.38/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [2000/2502 ( 80%)] Loss: 6.907085 (6.9401) Time: 0.302s, 1695.00/s (0.320s, 1601.57/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [2050/2502 ( 82%)] Loss: 6.915219 (6.9395) Time: 0.331s, 1547.05/s (0.320s, 1601.70/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [2100/2502 ( 84%)] Loss: 6.920197 (6.9390) Time: 0.337s, 1520.82/s (0.320s, 1601.97/s) LR: 1.000e-06 Data: 0.006 (0.007)
Train: 0 [2150/2502 ( 86%)] Loss: 6.924037 (6.9387) Time: 0.325s, 1574.30/s (0.320s, 1602.26/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [2200/2502 ( 88%)] Loss: 6.920416 (6.9383) Time: 0.300s, 1705.11/s (0.319s, 1602.63/s) LR: 1.000e-06 Data: 0.006 (0.007)
Train: 0 [2250/2502 ( 90%)] Loss: 6.898316 (6.9374) Time: 0.310s, 1649.44/s (0.319s, 1602.97/s) LR: 1.000e-06 Data: 0.006 (0.007)
Train: 0 [2300/2502 ( 92%)] Loss: 6.924686 (6.9371) Time: 0.309s, 1655.87/s (0.319s, 1602.88/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [2350/2502 ( 94%)] Loss: 6.907205 (6.9365) Time: 0.326s, 1572.94/s (0.319s, 1602.90/s) LR: 1.000e-06 Data: 0.005 (0.007)
/home/shawn/anaconda3/envs/deit/lib/python3.8/site-packages/PIL/TiffImagePlugin.py:788: UserWarning: Corrupt EXIF data. Expecting to read 4 bytes but only got 0.
warnings.warn(str(msg))
Train: 0 [2400/2502 ( 96%)] Loss: 6.908824 (6.9359) Time: 0.310s, 1652.27/s (0.319s, 1603.15/s) LR: 1.000e-06 Data: 0.006 (0.007)
Train: 0 [2450/2502 ( 98%)] Loss: 6.911987 (6.9355) Time: 0.317s, 1615.97/s (0.319s, 1603.37/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [2500/2502 (100%)] Loss: 6.918730 (6.9351) Time: 0.312s, 1641.96/s (0.319s, 1603.78/s) LR: 1.000e-06 Data: 0.005 (0.007)
Train: 0 [2501/2502 (100%)] Loss: 6.918357 (6.9348) Time: 0.644s, 795.44/s (0.319s, 1603.13/s) LR: 1.000e-06 Data: 0.344 (0.007)
Test: [ 0/97] Time: 1.865 (1.865) Loss: 6.8164 (6.8164) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000)
Test: [ 50/97] Time: 0.100 (0.192) Loss: 6.8828 (6.8914) Acc@1: 0.0000 ( 0.0613) Acc@5: 0.0000 ( 0.5859)
Test: [ 97/97] Time: 0.220 (0.162) Loss: 6.7188 (6.8880) Acc@1: 0.0000 ( 0.1820) Acc@5: 0.0000 ( 0.9180)
Test (EMA): [ 0/97] Time: 2.051 (2.051) Loss: 7.0312 (7.0312) Acc@1: 0.0000 ( 0.0000) Acc@5: 1.1719 ( 1.1719)
Test (EMA): [ 50/97] Time: 0.109 (0.193) Loss: 6.9570 (6.9737) Acc@1: 0.0000 ( 0.1072) Acc@5: 0.0000 ( 0.5093)
Test (EMA): [ 97/97] Time: 0.224 (0.163) Loss: 7.0273 (6.9708) Acc@1: 0.0000 ( 0.0900) Acc@5: 0.0000 ( 0.5080)
Current checkpoints:
('./output/train/20210219-222319-T2t_vit_14-224/checkpoint-0.pth.tar', 0.09)

Train: 1 [ 0/2502 ( 0%)] Loss: 6.897799 (6.8978) Time: 2.695s, 189.97/s (2.695s, 189.97/s) LR: 1.673e-04 Data: 2.323 (2.323)
Train: 1 [ 50/2502 ( 2%)] Loss: nan ( nan) Time: 0.279s, 1834.73/s (0.337s, 1518.12/s) LR: 1.673e-04 Data: 0.005 (0.051)
Train: 1 [ 100/2502 ( 4%)] Loss: nan ( nan) Time: 0.276s, 1857.70/s (0.309s, 1655.29/s) LR: 1.673e-04 Data: 0.006 (0.029)
Train: 1 [ 150/2502 ( 6%)] Loss: nan ( nan) Time: 0.289s, 1773.38/s (0.300s, 1705.98/s) LR: 1.673e-04 Data: 0.007 (0.021)
Train: 1 [ 200/2502 ( 8%)] Loss: nan ( nan) Time: 0.273s, 1877.76/s (0.295s, 1733.59/s) LR: 1.673e-04 Data: 0.005 (0.018)
Train: 1 [ 250/2502 ( 10%)] Loss: nan ( nan) Time: 0.268s, 1912.76/s (0.292s, 1752.17/s) LR: 1.673e-04 Data: 0.005 (0.015)
Train: 1 [ 300/2502 ( 12%)] Loss: nan ( nan) Time: 0.285s, 1793.85/s (0.290s, 1764.29/s) LR: 1.673e-04 Data: 0.005 (0.014)
Train: 1 [ 350/2502 ( 14%)] Loss: nan ( nan) Time: 0.281s, 1819.69/s (0.289s, 1769.46/s) LR: 1.673e-04 Data: 0.006 (0.013)
Train: 1 [ 400/2502 ( 16%)] Loss: nan ( nan) Time: 0.268s, 1908.61/s (0.290s, 1767.59/s) LR: 1.673e-04 Data: 0.005 (0.012)
Train: 1 [ 450/2502 ( 18%)] Loss: nan ( nan) Time: 0.287s, 1783.58/s (0.289s, 1773.71/s) LR: 1.673e-04 Data: 0.006 (0.011)
Train: 1 [ 500/2502 ( 20%)] Loss: nan ( nan) Time: 0.285s, 1796.56/s (0.288s, 1778.22/s) LR: 1.673e-04 Data: 0.005 (0.011)
Train: 1 [ 550/2502 ( 22%)] Loss: nan ( nan) Time: 0.280s, 1825.68/s (0.287s, 1781.91/s) LR: 1.673e-04 Data: 0.005 (0.010)
Train: 1 [ 600/2502 ( 24%)] Loss: nan ( nan) Time: 0.275s, 1859.97/s (0.287s, 1785.50/s) LR: 1.673e-04 Data: 0.009 (0.010)
Train: 1 [ 650/2502 ( 26%)] Loss: nan ( nan) Time: 0.278s, 1841.99/s (0.286s, 1788.40/s) LR: 1.673e-04 Data: 0.005 (0.010)
Train: 1 [ 700/2502 ( 28%)] Loss: nan ( nan) Time: 0.275s, 1860.43/s (0.286s, 1790.68/s) LR: 1.673e-04 Data: 0.006 (0.009)
Train: 1 [ 750/2502 ( 30%)] Loss: nan ( nan) Time: 0.287s, 1784.59/s (0.286s, 1792.93/s) LR: 1.673e-04 Data: 0.006 (0.009)
Train: 1 [ 800/2502 ( 32%)] Loss: nan ( nan) Time: 0.277s, 1848.72/s (0.285s, 1794.68/s) LR: 1.673e-04 Data: 0.006 (0.009)
Train: 1 [ 850/2502 ( 34%)] Loss: nan ( nan) Time: 0.286s, 1792.44/s (0.285s, 1795.76/s) LR: 1.673e-04 Data: 0.006 (0.009)
Train: 1 [ 900/2502 ( 36%)] Loss: nan ( nan) Time: 0.279s, 1833.06/s (0.285s, 1795.15/s) LR: 1.673e-04 Data: 0.006 (0.008)
Train: 1 [ 950/2502 ( 38%)] Loss: nan ( nan) Time: 0.277s, 1847.88/s (0.285s, 1795.23/s) LR: 1.673e-04 Data: 0.005 (0.008)
Train: 1 [1000/2502 ( 40%)] Loss: nan ( nan) Time: 0.286s, 1789.41/s (0.285s, 1796.69/s) LR: 1.673e-04 Data: 0.005 (0.008)
Train: 1 [1050/2502 ( 42%)] Loss: nan ( nan) Time: 0.277s, 1848.11/s (0.285s, 1798.21/s) LR: 1.673e-04 Data: 0.005 (0.008)
Train: 1 [1100/2502 ( 44%)] Loss: nan ( nan) Time: 0.284s, 1799.80/s (0.285s, 1799.40/s) LR: 1.673e-04 Data: 0.005 (0.008)
Train: 1 [1150/2502 ( 46%)] Loss: nan ( nan) Time: 0.285s, 1799.56/s (0.284s, 1800.19/s) LR: 1.673e-04 Data: 0.006 (0.008)
Train: 1 [1200/2502 ( 48%)] Loss: nan ( nan) Time: 0.294s, 1742.39/s (0.284s, 1801.04/s) LR: 1.673e-04 Data: 0.006 (0.008)
Train: 1 [1250/2502 ( 50%)] Loss: nan ( nan) Time: 0.285s, 1796.71/s (0.284s, 1802.07/s) LR: 1.673e-04 Data: 0.005 (0.008)
Train: 1 [1300/2502 ( 52%)] Loss: nan ( nan) Time: 0.274s, 1870.25/s (0.284s, 1802.85/s) LR: 1.673e-04 Data: 0.006 (0.008)
Train: 1 [1350/2502 ( 54%)] Loss: nan ( nan) Time: 0.271s, 1886.95/s (0.284s, 1803.84/s) LR: 1.673e-04 Data: 0.006 (0.008)
Train: 1 [1400/2502 ( 56%)] Loss: nan ( nan) Time: 0.288s, 1776.96/s (0.284s, 1804.18/s) LR: 1.673e-04 Data: 0.006 (0.008)
Train: 1 [1450/2502 ( 58%)] Loss: nan ( nan) Time: 0.282s, 1818.29/s (0.284s, 1802.31/s) LR: 1.673e-04 Data: 0.006 (0.007)
Train: 1 [1500/2502 ( 60%)] Loss: nan ( nan) Time: 0.262s, 1952.51/s (0.284s, 1803.01/s) LR: 1.673e-04 Data: 0.007 (0.007)

@yuanli2333
Copy link
Collaborator

Hi, it's weird that the loss become NAN, you should:

  1. Check the token_perofermer you used is our one or do you modify it?
  2. If you modified the token_performer.py or some other .py file, you should check if you add an epsilon term to stablize the division like this line.

@yix081
Copy link
Author

yix081 commented Feb 20, 2021

It is a fresh download without changing any line of code. It is strange. I will run on another server to see if this is same.

@MarkOkd
Copy link

MarkOkd commented Feb 20, 2021

I faced the same issue when I trained T2t_vit_14 on food-101 dataset. Here's the code
Now, I am training the model without AMP, and it seems fine so far. So I think the cause is about mixed precision.

@yuanli2333
Copy link
Collaborator

I faced the same issue when I trained T2t_vit_14 on food-101 dataset. Here's the code
Now, I am training the model without AMP, and it seems fine so far. So I think the cause is about mixed precision.

Very nice try!
It make sense that the AMP would cause NAN loss beacuse of the softmax operation in Performer layer (token_performer.py). I guess there are two solutions for this problem:

  1. Disable AMP in some specifical GPUs. I have trained T2T-ViT on TitanV, 1080Ti, 2080Ti and V100, it can work fine, so AMP can work in these GPUs.
  2. Modify this line in token_performer.py as:
return torch.exp((wtx - xd) - torch.max((wtx - xd), dim=-1, keepdim=True).values + self.epsilon) / math.sqrt(self.m)

which would stabilize the performer layer. (PS. I haven't tried the second solution.)

@MarkOkd
Copy link

MarkOkd commented Feb 20, 2021

I tried the second solution, but I still got NAN. the result is here
It's a little bit improvement, though.
Before the modification, NAN first appeared at Train: 1 [ 100/2367 ( 4%)]
After the modification, NAN first appeared at Train: 1 [ 600/2367 ( 25%)]

@yuanli2333
Copy link
Collaborator

So currently we can disable amp by set the amp as False, or train T2T-ViT on some specifical GPUs: TitanV, 1080Ti, 2080Ti and V100.

@MarkOkd
Copy link

MarkOkd commented Feb 20, 2021

I think that it would be convenient to change the lines 217-218
from

parser.add_argument('--amp', action='store_true', default=True,
                    help='use NVIDIA Apex AMP or Native AMP for mixed precision training')

to

parser.add_argument('--disable_amp', action='store_true', default=False,
                    help='disable AMP')

and change the line 335
from

if args.amp:

to

if not args.disable_amp:

@yuanli2333
Copy link
Collaborator

I have update how to disable --amp in our repo and modify this line from

parser.add_argument('--amp', action='store_true', default=True,
                    help='use NVIDIA Apex AMP or Native AMP for mixed precision training')

to

parser.add_argument('--amp', action='store_true', default=False,
                    help='use NVIDIA Apex AMP or Native AMP for mixed precision training')

so you can disable amp now by removing '--amp' in the training scripts.
I close the issue but welcome to reopen it if there are more questions about NAN loss.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants