Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
sym
 
 
 
 
 
 
 
 
 
 
 
 

README.md

SymmetryNet: Learning to Detect 3D Reflection Symmetry for Single-View Reconstruction

This repository contains the official PyTorch implementation of the paper: Yichao Zhou, Shichen Liu, Yi Ma. "Learning to Detect 3D Reflection Symmetry for Single-View Reconstruction".

Introduction

SymmetryNet is a geometry-based end-to-end deep learning framework that detects the plane of reflection symmetry and uses it to help the prediction of depth maps by finding the intra-image pixel-wise correspondence.

Main Results

Qualitative Measures

Coming soon.

Quantitative Measures

Coming soon.

Code Structure

Below is a quick overview of the function of key files.

########################### Data ###########################
data/
    shapenet-r2n2/              # default folder for R2N2 data
logs/                           # default folder for storing the output during training
########################### Code ###########################
config/                         # neural network hyper-parameters and configurations
    shapenet-aio.yaml           # default config for symmetry detection & depth estimation
misc/                           # misc scripts that are not important
    find-radius.py              # script for generating figure grids
sym/                            # sym module so you can "import sym" in other scripts
    models/                     # neural network architectures
        symmetry_net.py         # wrapper for loss
        mvsnet.py               # 3D hourglass
    config.py                   # global variables for configuration
    datasets.py                 # reading the training data
    trainer.py                  # general trainer
train.py                        # script for training the neural network
eval.py                         # script for evaluating a dataset from a checkpoint
plot-angle.py                   # script for ploting angle error curves
plot-depth.py                   # script for ploting depth error curves

Reproducing Results

Installation

For the ease of reproducibility, you are suggested to install miniconda (or anaconda if you prefer) before following executing the following commands.

git clone https://github.com/zhou13/symmetrynet
cd symmetrynet
conda create -y -n symmetrynet
source activate symmetrynet
conda install -y pyyaml docopt matplotlib scikit-image opencv tqdm
# Replace cudatoolkit=10.2 with your CUDA version: https://pytorch.org/get-started/
conda install -y pytorch cudatoolkit=10.2 -c pytorch
mkdir data logs results

Downloading the Processed Datasets

Make sure curl is installed on your system and execute

cd data
../misc/gdrive-download.sh 1zdHsSb-xHhY8imIy3uWt_XfBW_YQX4Vh shapenet-r2n2.zip
unzip *.zip
rm *.zip
cd ..

If gdrive-download.sh does not work for you, you can download the pre-processed datasets manually from our Google Drive and proceed accordingly.

Training

Execute the following commands to train the neural networks from scratch with four GPUs (specified by -d 0,1,2,3):

python ./train.py -d 0,1,2,3 --identifier baseline config/shapenet-aio.yaml

The checkpoints and logs will be written to logs/ accordingly.

Pre-trained Models

You can download our reference pre-trained models from Google Drive. This pretrained model has slightly better performance than the ones reported in the paper, because it is trained with more epochs.

Evaluation

To evaluate the models with coarse-to-fine inference for symmetry plane prediction and depth map estimation, execute

python eval.py -d 0 --output results/symmetrynet.npz logs/<your-checkpoint>/config.yaml logs/<your-checkpoint>/checkpoint_latest.pth.tar

The error statistics are printed on the screen and the error metrics are stored in results/symmetrynet.npz. To visualize the error distribution and plot the error-percentage curves, execute

python plot-angle.py
python plot-depth.py

Acknowledgement

This work is supported by a research grant from Sony Research.

Citing SymmetryNet

If you find SymmetryNet useful in your research, please consider citing:

@article{zhou2020learning,
    author = {Zhou, Yichao and Liu, Shichen and Ma, Yi},
    title = {Learning to Detect 3D Reflection Symmetry for Single-View Reconstruction},
    year = {2020},
    archivePrefix = "arXiv", 
    note = {arXiv:2006.10042 [cs.CV]},
}

About

SymmetryNet: Learning to Detect 3D Reflection Symmetry for Single-View Reconstruction

Resources

License

Releases

No releases published

Packages

No packages published
You can’t perform that action at this time.