Skip to content

Latest commit

 

History

History
340 lines (310 loc) · 16.1 KB

bio465.md

File metadata and controls

340 lines (310 loc) · 16.1 KB

$$ \def\ddt{\frac{d}{dt}} \def\abs#1{\left|,#1,\right |} $$

BIO465

GNU General Public License v3.0 licensed. Source available on github.com/zifeo/EPFL.

Sping 2017: Biological Modeling of Neural Networks

[TOC]

Simple neuron models

  • cortex : frontal, motor, visual
  • neuron : 10K per cubic cm, 3km wire
  • spike : rare events triggered at threshold, action potential
    • reset : refactoriness
  • postsynaptic potential : $\epsilon_{ij}(t)=u_i(t)-u_{rest}$
    • excitatory : EPSP
    • inhibitory : IPSP
  • membrane potential : fluctuating
  • passive membrane model : $\tau\ddt u = -(u-u_{rest})+RI(t)$
    • circuit : capacitor in parallel with resistance, $I=I_R+I_C$ with $I_C=C\ddt u$ and $u=RI$
    • free solution : $u(t)=u_{rest}+\int_{-\infty}^\infty\frac{1}{C}e^{-(t-t')/\tau}I(t')dt'$
    • single pulse : $\delta u(t)=\frac{q}{C}e^{-(t-t_0)/\tau}$
  • pulse current input : $I(t)=q\cdot \delta(t-t_0)$
  • leaky integrate and fire model LIF : $\tau\ddt u = -(u-u_{rest})+RI(t)$ with fire at $u(t)=\vartheta$ and resetß $u\to u_{reset}$
    • frequency-current
  • nonlinear integrate and fire NLIF : $\tau \ddt u=F(u)+RI(t)$
    • quadratic : $F(u)=c_2(u-c_1)^2+c_0$
    • exponential : $F(u)=-(u-u_{rest})+c_0 e^{u-\vartheta}$
  • resting potential : $-70mV$

Hodgkin-Huxley models

  • membrane
    • ion channels : $C\ddt u=-\sum_k I_{ion,k}+I(t)$, 200 identified ones, open/close stochasticly
    • ion pumps : concentration difference giving voltage difference
    • inside $n_1$ : $K$ potassium
    • outside $n_2$ : $Na$ sodium
    • probability to be in a state with energy $E$ : $n\propto e^{-\frac{E}{kT}}$ with Boltzmann constant $kT$
  • Hodgin-Huxley : 4 differential equation, 4D, threshold depends on stimulus, voltage threshold good approximation
    • f-I curve
      • constant current input
      • pulse input
      • step current
    • threshold : not strict, coupled differential equations, refactoriness
  • reversal potential : $\Delta u = u_1-u_2=-\frac{kT}{q}\ln\frac{n(u_1)}{n(u_2)}$no ion flow, compute by nernst equation

Two dimensional neuron models

  • reduce HH model to 2 dimensions : $C\ddt u=-g_{Na}m_0(u)^3(1-w)(u-E_{Na})-g_K(\frac{w}{a})^4(u-E_K)-g_l(u-E_l)+I(t)$ with $\ddt w=-\frac{w -w_0(u)}{\tau_{eff}(u)}$
    • separation of time scales for $\tau_1 <<\tau_2$ : dynamics of $m$ fast, $m(t)=m_0(u(t))$
    • exploit similarities/correlations : dynamics of $h$ and $n$ similar, $1-h(t)=an(t)=w(t)$
    • assume $I(t)$ slow
  • 2 dimensional equations : $C\ddt u=f(u(t),w(t))+I(t)$ with $\ddt w=g(u(t),w(t))$
    • $\tau_1<<\tau_2$ : $x=h(y)$ approximate $\tau_1\ddt x=-x+h(y)$
    • simplify : $\tau_2\ddt y=f(y)+g(h(y))$
  • phase plane analysis : flow arrow
    • nullcline : all points with $\ddt u=0$ or $\ddt w=0$
    • consider : change in small time step
    • stable fixed point : characterzied by Eigenvalues
      • linearized equations $\ddt x=\begin{pmatrix}F_u& F_w\\ G_u& G_w\end{pmatrix}x$
      • solution form : $x(t)=e^{\lambda t}$
      • two solutions : $\lambda_++\lambda_-=F_u+G_w$ and $\lambda_+\lambda_-=F_uG_w-F_wG_u$
      • stability : $\lambda_+ < 0$ and $\lambda_- < 0$
      • implication : $F_u+G_w <0$ and $F_uG_w-F_wG_u > 0$
    • intersection : moves and changes stability
  • FitzHugh-Nagumo model
  • type I and II model

Synapse models

  • glutamate : neurotransmitter at excitatory synapses, $E_{syn}\approx 0mV$
    • AMPA channel : rapid, calcium cannot pass if open
    • NMDA channel : slow, calcium can pass if open
  • GABA : neurotransmitter at inhibitory synapses, $E_{syn}\approx -75mV$
    • GABA-A
    • GABA-B
  • basic model
  • time rise model
  • synpatic short-term plasticity
    • change induced : over 0.5s
    • recover : over 1s
    • depression
    • faciliation
  • dendrite : longitudinal resistance
  • cable equation
    • passive dendrite : leak
    • active dendrite : Ca, Na
    • axon : Na, K
  • compartmental models : many ion channels, spatially distributed, morphologically reconstructed, difficult to tune
  • backpropagating action potential BPAP

Dynamical systems

  • limit cycle : oscillation
    • containing one unstable fixed point
    • no other fixed point
    • bounding box with inward flow
  • type II model : discontinuous gain function
    • Hopf bifuraction : stability loss give oscillation with finite frequency
  • type I model : size of arrows matters
    • saddle-node bifurcation
  • stable/unstable manifold : attractor/repellor
  • delayed spike
  • separation of time scales : $\tau_w >>\tau_u\to\Delta w<<\Delta u$
  • reduction to 1 dimension : $\tau_w >>\tau_u\to w\approx w_{rest}$

Networks of neurons

  • brain
    • distributed architecture : $10^{10}$ neurons
    • connections/neurons : $10^4$
    • memory separation from processing : no
  • associative memory : pattern completion, word recognition
  • classification by similarity : closest prototype $\abs{x-p^T}\le\abs{x-p^A}$
  • magnetic materials : $S_i=\pm 1$, $w_{ij}=\pm 1$ (same state or not) with $S_i(t+1)=sgn[\sum_j w_{ij}S_j(t)]$ over all interactions
    • noisy magnet : arrow missaligned
    • pure magnet : everything aligned
  • hopfield model : maximum overlap similarity, random patterns, fully connected, $w_{ij}=\sum_\mu p_i^\mu p_j^\mu$
    • update : $S_i(t+1)=sgn[h_i(t)]=sgn[\sum_j w_{ij} S_j(t)]$
    • overlap : $m^\mu(t)=\frac{1}{N}\sum_j p_j^\mu S_j(t)$
  • hebbian learning : local rule, simultaneously active (correlation), fire together wire together
  • Stroop effect : hard to work against natural associations
  • storage capacity : random walk
    • minimal condition : pattern fixed point of dynamics
    • retrieval requires more

Attractor networks

  • hopfield model : for small number of patterns, states with overlap 1 are fixed point
  • stochastic hopfield model : $P(S_i(t+1)=+1\mid h_i)=g[h_i]=g[\sum_j w_{ij} S_j(t)]=g[\sum_\mu p_i^\mu m^\mu(t)]$
    • $g(h_i)=0.5[1+\tanh(2h)]$
  • energy landscape : $E=-\frac{1}{2}\sum_{i,j}w_{ij}S_iS_j$
  • random pattern vs orthogonal patterns
  • attractor networks : dynamics moves network state to fixed point, $w_{ij}=\frac{1}{N}\sum_\mu (p_i^\mu - b)(p_j^\mu-a)$ with $a,b$ means of activity
    • inhibition/excitation separated : active together $w_{ij}=\frac{1}{N}\sum_\mu(p_i^\mu+1)(p_j^\mu+1)$
  • rate model : active = high rate = many spikes per second
  • hebbian model : $\ddt w_{ij}=F(w_{ij};v_j^{pre},v_i^{post})=a_0+a_1^{pre}v_j^{pre}+a_1^{post}v_i^{post}+a_2^{corr}v_j^{pre}v_i^{post}+\cdots$
    • BCM rule
  • plasticity : memory formation/retention/stability
    • homosynaptic/Hebb : pre and post
    • heterosynapitc : post, can self-stabilize
    • transmitter-induced : pre
    • long-term persistance : LTP vsLTD

Neuronal populations

  • population activity : $A(t)=\frac{n(t;t+\Delta t)}{N\Delta t}$, similar properties
  • cortical column : neighboring neurons has similar properties
  • receptive field : retina, LGN (surrounding), visual cortex (orientation selective), spatially localized
  • neuronal population : group of neurons with similar properties, input, receptive field, connectivity
  • connectivity
    • all-to-all
    • random with number $K$ input fixed
    • random with probability
  • meanfield argument : all neurons receive the same total input current
    • asynchronous state : $<A(t)>=A_0=constant$
    • fully-connected network : static coupling $w_{ij}=w_0$
    • pulse : $\alpha$
    • current : $I(t)=I^{ext}(t)+I^{net}(t)$ with $I^{net}(t)=\sum_j\sum_f w_{ij}\alpha(t-t_j^f)$ and $w_{ij}=\frac{J_0}{N}$
      • neuron independent : $I(t)=J_0\int \alpha(s)A(t-s)ds+I^{ext}(t)$
      • all variables constant in time : $I_0=J_0qA_0+I_0^{ext}$ with $q=\int\alpha(s)ds$
    • gain-function : $\nu=g(I_0)$, frequency current relationship
    • single neuron rate = population rate : $\nu=A_0$
  • stochastic meanfield : when increase network size
    • with $p$ fixed : $w_{ij}=\frac{w_0}{pN}$, fluctuation of $A$ decrease, fluctuation of $I$ decrease
    • with $K$ connections : fluctuation of $A$ decrease, fluctuation of $I$ remain
    • balanced, fixed $p$ : fluctuation of $A$ decrease, fluctuation of $I$ become smooth
  • stationary state
    • single neuron = population rate of homogenous population
    • activity predicted by gain function, external input and intra-population coupling strengh
    • choice of neuron model irrelevant apart from gain

Continuum models

  • transients : beyond stationary states, neuron model matters
  • SRM and GLM
    • uncoupled population
      • low noise : fast transient, oscillation, $A(t)\approx g(I(t))\approx\tilde{g}(I(t),I'(t))$
      • high noise : slow transient, $A(t)=F(h(t))$
    • 1 population = 1 differential equation : $\tau\ddt h(t)=-h(t)+RI^{ext}(t)+\gamma F(h(t))$ as $I(t)=I^{ext}(t)+J_0qF(h(t))$
  • coarse coding : many cells respond to single stimulus with different rate, discrete
  • spatial continuum : $I(x,t)=I^{ext}(x,t)+d\int w(x-x',t)A(x',t)dx'$ and $\tau\ddt h(x,t)=-h(x,t)+RI(x,t)$
    • integro-differential equation : $\tau\ddt h(x,t)=-h(x,t)+RI^{ext}(x,t)+d\int w(x-x')F(h(x',t))dx'$
    • coupling across continuum : mexican hat, gaussian-like with elbows
    • bump solution : activity profile in absence of input, strong lateral connectivity, current orientation
    • uniform solution : edge enhancement effect, matchband, contrast enhancement

Competitive dynamics

  • receptive fields dependence : direction of motion $\beta$ with preferred direction $P$ (neutral direction $N$)
    • coherence : correlation agreement between these neurons
  • LIP neuron : selective to target of saccade, increase faster if signal strong, activity noisy
  • decision dynamics : assumption F-I curve linear in some limited regime and inhibit population is fast ($\tau_{inb}<<\tau_{exc}$)
    • $A_{inh}(t)$ phase plane
      • strong external input
      • biased input $h_2^{ext}<h_1^{ext}$ : stable fixed point, decision reflects bias
      • symmetric but small input : stable fixed point
      • symmetric but strong input : 2 stable fixed point
      • homogeneous : saddle point, decision must be taken

Optimizing neuron models

  • good neuron models
    • predict spike time and subtreshold voltage
    • easy to interpret
    • flexible enough to account for variety of phenomena
    • systematic procedure to optimize parameters
  • best choice of $f$ : linear + exponential $\tau\ddt u =-(u-u_{rest})+\Delta e^{\frac{u-\vartheta}{\Delta}}$
    • need to add
      • adaptation on slower time scale
      • diversity of firing pattern
      • increase threshold $\vartheta$ after each spike : dynamic threshold : $/vartheta=\theta_0+\sum_f\theta_1(t-t^f)$
      • noise
    • AdEx model : adaptation and fire patterns - $a$ : slow of $w$-nullcline - $b$ : $w$ jump amount after spike
  • adaptive leaky integrate and fire
  • spike response model : SRM, firing if $u(t)=\vartheta(t)$
    • espace noise : $p(t)=p_0e^{\frac{u(t)-\vartheta}{\Delta}}$
    • likelihood of spike train
    • SRM with escape noise : GLM, model of encoding and decoding (predict stimulus, neuroprosthetics)
  • fitting models to data
    • voltage/subthreshold : linear in parameters, quadratic error function
    • spike times : nonlinear but GLM, convex error function
    • limited in vitro
  • how long does spike effect last : powerlaw

Variability and noise

  • variability : spike timing, membrane potential
    • in vivo : data looks noisy
    • in vitro : fluctuation
  • source
    • intrinsic noise : finite number of channels, finite temperature, stochastic opening and closing, small contribution, fairly reliable
    • network noise : spike arrival, beyond of control of experimentalist, big contributions
  • poisson model
    • homogeneous : constant rate
      • firing probability : $P_F=p_0\Delta t$
      • survivor function : $\ddt S(t_1\mid t_0)=-p_0 S(t_1\mid t_0)$
    • inhomogeneous : rate changes, consistent with rate coding
      • firing probability : $P_F=p(t)\Delta t$
      • survivor function : $S(t\mid\hat t)=e^{-\int_{\hat t}^t p(t')dt'}$
      • interval distribution : $P(t\mid\hat t)=p(t)e^{-\int_{\hat t}^t p(t')dt'}$
  • rate codes
    • temporal averaging : $v(t)=\frac{n^{sp}}{T}$ single neuron, single trial, too slow for animal
      • interspike intervals : regularity, ISI broad distribution
      • fano factor : $F=\frac{<(n_k^{sp}-<n_k^{sp}>)^2>}{<n_k^{sp}>}$, repeatability across repetitions
    • averaging across repetitions : single neuron, many trial, not useful for animal, $PSTH(t)=\frac{n(t;t+\Delta t)}{K\Delta t}$
    • population averaging (spatial) : many neuron, natural readout, $A(t)=\frac{n(t;t+\Delta t)}{N\Delta t}$
  • stochastic spike arrival : poisson model
    • total spike train of $K$ presynaptic neurons : $P_F=Kp_0\Delta t$, take expectation $S(t)=\sum_{k=1}^K\sum_f\delta(t-t_k^f)$ as $\Delta t\to 0$
    • passive membrane : LIF without threshold, can analytically predict mean of membrane potential fluctuation, $I^{syn}(t)=I_0+I^{fluct}(t)$
    • white noise : $<\zeta(t)>=0$, autocorrelation $<\zeta(t)\zeta(t')>=a^2\tau\delta(t-t')$
    • discrete poisson : probability of firing $p=v\Delta t$ with $\Delta t$ small time step, autocorrelation $<S(t)S(t')>=v_0\delta(t-t')+[v_0]^2$
  • noisy integrate and fire : passive membrane $u(t)=\sum_k w_k\sum_f \epsilon(t'-t_k^f)$
  • espace noise : rate $p(t)=f(u(t)-\vartheta)=\frac{c}{\Delta}e^{\frac{u(t)-\vartheta}{\Delta}}$, $\tau\ddt u_i=-u_i + RI+\zeta(t)$
  • interspike interval distribution : time-dependent, $\ddt S_I(t\mid\hat t)=-p(t)S_I(t\mid\hat t)$
    • interval distribution : $S_I(t\mid\hat t)=e^{-\int_{\hat t}^t p(t')dt'}$
    • survivor function : $P_I(t\mid\hat t)=p(t)e^{-\int_{\hat t}^t p(t')dt'}$

Synaptic plasticity

  • synapse plasticity : adapt statistics of task (receptive field), memorize facts, avoid blowup of activity, avoid useless loss of energy
  • hemeostatis : activity control, avoid blow-up
  • hebbian learning : unsupervised learning, statistical change, development (wiring receptive field)
    • eligibility trace : synapse keep memory of pre-post hebbian learning
  • reinforcement learning : success = reward - expectect reward, reward + hebbian, $\Delta w_{ij}\propto F(pre,post,success)$, useful new behavior
    • dopamine : reward/success
    • neuromodulator : interestingness, surpise, attention, novelty, near-global action
  • STDP model : $\tau_+ \ddt z_j^+=-z_j^++\sum_f \delta(t-t_k^f)$ and $\tau_-\ddt z_i^-=-z_i^-+\sum_f\delta(t-t_i^f)$ giving $\Delta w_{ij}=\sum_{t_i^f}\sum_{t_j^f}W(t_j^f-t_i^f)$
  • STDP to rate model : $v_i^{post}(t)=\sum_j w_{ij}\sum_f \epsilon(t-t_j^f)$
  • STDP triplet : enable to fit experimental data with rate based evolution
    • pre-post : $\ddt w_k=-Bz_i^-\delta(t-t_j^{pre})$
    • post-pre-post : $\ddt w_j=+A^+z_j^+z_i^{slow}\delta(t-t_i^{post})$
    • assume poisson independent : $\ddt w_j=-\alpha Bv_i^{post}v_j^{pre}+\beta A^+(v_i^{post})^2v_j^{pre}$
  • self stabilitizing rate based plasticity : $\ddt w_{ij}=\cdots$
    • nonlinear Hebb for potentiation : $+a_3^{BCM}v_j^{pre}(v_i^{post})^2$
    • pre-post for depression : $-a_2^{LTD}v_j^{pre}v_i^{post}$
    • heterosynaptic plasticity : pure post, $-a_4^{het}(w_{ij}-z_{ij})[v_i^{post}]^4$
    • transmitter-induced : pure pre, $+a_1^{pre}v_j^{pre}$