Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixes a number of reported issues #858

Merged
merged 6 commits into from
Nov 15, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
5 changes: 5 additions & 0 deletions doc/latexuguide/elements.tex
Original file line number Diff line number Diff line change
Expand Up @@ -900,6 +900,11 @@ \section{RF Cavity}
in particular to \texttt{TIME} and \texttt{TOTALPATH} switches,
concerning RF behaviour of cavities in PTC.

\item The charge is not taken into account by the RF-cavity.

\item The RF-cavity has to be thin for TRACKING in MAD-X. This is handled by
\texttt{MAKETHIN} but note that it is always sliced into a single slice.

\end{itemize}

The \texttt{RFCAVITY} can also have attributes that only become active in
Expand Down
8 changes: 8 additions & 0 deletions src/mad_mkthin.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2674,6 +2674,12 @@ sequence* SequenceList::slice_sequence(const std::string slice_style,sequence* t
if (theSeqElList.current_node() == thick_sequ->end)
{
break;
}
if(theSeqElList.current_node()->p_elem!=nullptr){
if(strcmp(theSeqElList.current_node()->p_elem->base_type->name, "rfcavity")==0 &&
find_element(theSeqElList.current_node()->p_elem->name, sliced_seq->cavities) == nullptr){
add_to_el_list(&theSeqElList.current_node()->p_elem, 0, sliced_seq->cavities, 0);
}
}
theSeqElList.current_node(theSeqElList.current_node()->next); // set current_node
}
Expand All @@ -2695,5 +2701,7 @@ sequence* SequenceList::slice_sequence(const std::string slice_style,sequence* t
put_sequ(thick_sequ); // Slicing done for this sequence. Add to list of sequences sliced
if(MaTh::Verbose) std::cout << __FILE__ << " " << __FUNCTION__ << " line " << std::setw(4) << __LINE__ << " before print theSeqElList" << std::endl;
if(MaTh::Verbose) theSeqElList.Print(); // print final list


return sliced_seq;
} // slice_sequence
4 changes: 2 additions & 2 deletions src/trrun.f90
Original file line number Diff line number Diff line change
Expand Up @@ -3560,7 +3560,7 @@ subroutine trsol(track,ktrack,dxt,dyt)

!---- Radiation loss at entrance (step.eq.1) and exit (step.eq.3)
if ((step.eq.1).or.(step.eq.3)) then
if (radiate) then
if (radiate .and. elrad .gt. zero) then
!---- Full damping.
if (damp) then
curv = sqrt(dxt(i)**2 + dyt(i)**2) / elrad;
Expand Down Expand Up @@ -3630,7 +3630,7 @@ subroutine trsol(track,ktrack,dxt,dyt)
dyt(i) = pyf_ - track(4,i);

if ((step.eq.1).or.(step.eq.3)) then
if (radiate) then
if (radiate .and. elrad .gt. zero) then
!---- Full damping.
if (damp) then
curv = sqrt(dxt(i)**2 + dyt(i)**2) / length;
Expand Down
46 changes: 28 additions & 18 deletions src/twiss.f90
Original file line number Diff line number Diff line change
Expand Up @@ -7943,15 +7943,20 @@ SUBROUTINE tmsol_th(ftrk,orbit,fmap,ek,re,te)

!---- Half radiation effect at entry.
if (radiate .and. ftrk) then
kx = ((sk**2)*orbit(1)-sk*orbit(4))*elrad;
ky = ((sk**2)*orbit(3)+sk*orbit(2))*elrad;
rfac = (arad * gamma**3 / three) * (kx**2 + ky**2) / elrad;
pt = orbit(6);
bet_sqr = (pt*pt + two*pt/bet0 + one) / (one/bet0 + pt)**2;
f_damp_t = sqrt(one + rfac*(rfac - two) / bet_sqr);
orbit(2) = orbit(2) * f_damp_t;
orbit(4) = orbit(4) * f_damp_t;
orbit(6) = orbit(6) * (one - rfac) - rfac / bet0;
if(elrad .eq. zero) then
call fort_warn('TWCPGO: ','Radiation effects ignored for solenoid '// &
'with l=0, lrad=0 and radiate=true')
else
kx = ((sk**2)*orbit(1)-sk*orbit(4))*elrad;
ky = ((sk**2)*orbit(3)+sk*orbit(2))*elrad;
rfac = (arad * gamma**3 / three) * (kx**2 + ky**2) / elrad;
pt = orbit(6);
bet_sqr = (pt*pt + two*pt/bet0 + one) / (one/bet0 + pt)**2;
f_damp_t = sqrt(one + rfac*(rfac - two) / bet_sqr);
orbit(2) = orbit(2) * f_damp_t;
orbit(4) = orbit(4) * f_damp_t;
orbit(6) = orbit(6) * (one - rfac) - rfac / bet0;
endif
endif

!---- First-order terms.
Expand All @@ -7977,15 +7982,20 @@ SUBROUTINE tmsol_th(ftrk,orbit,fmap,ek,re,te)

!---- Half radiation effect at exit.
if (radiate .and. ftrk) then
kx = ((sk**2)*orbit(1)-sk*orbit(4))*elrad;
ky = ((sk**2)*orbit(3)+sk*orbit(2))*elrad;
rfac = (arad * gamma**3 / three) * (kx**2 + ky**2) / elrad;
pt = orbit(6);
bet_sqr = (pt*pt + two*pt/bet0 + one) / (one/bet0 + pt)**2;
f_damp_t = sqrt(one + rfac*(rfac - two) / bet_sqr);
orbit(2) = orbit(2) * f_damp_t;
orbit(4) = orbit(4) * f_damp_t;
orbit(6) = orbit(6) * (one - rfac) - rfac / bet0;
if(elrad .eq. zero) then
call fort_warn('TWCPGO: ','Radiation effects ignored for solenoid '// &
'with l=0, lrad=0 and radiate=true')
else
kx = ((sk**2)*orbit(1)-sk*orbit(4))*elrad;
ky = ((sk**2)*orbit(3)+sk*orbit(2))*elrad;
rfac = (arad * gamma**3 / three) * (kx**2 + ky**2) / elrad;
pt = orbit(6);
bet_sqr = (pt*pt + two*pt/bet0 + one) / (one/bet0 + pt)**2;
f_damp_t = sqrt(one + rfac*(rfac - two) / bet_sqr);
orbit(2) = orbit(2) * f_damp_t;
orbit(4) = orbit(4) * f_damp_t;
orbit(6) = orbit(6) * (one - rfac) - rfac / bet0;
endif
endif

end SUBROUTINE tmsol_th
Expand Down