Skip to content

Commit

Permalink
fix #525 fast_float library used by Nelson to parse numbers (#530)
Browse files Browse the repository at this point in the history
* fix #525 fast_float library used by Nelson to parse numbers

* manages alternative exponential format
  • Loading branch information
Nelson-numerical-software committed Oct 11, 2021
1 parent d0496d1 commit 46181b3
Show file tree
Hide file tree
Showing 12 changed files with 3,049 additions and 12 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.md
@@ -1,5 +1,7 @@
# 0.5.10 (UNRELEASED)

- [#525](http://github.com/Nelson-numerical-software/nelson/issues/525): use [`fast_float`](https://github.com/fastfloat/fast_float) library to parse numbers .

- [#520](http://github.com/Nelson-numerical-software/nelson/issues/520): `inputname` get variable name of function input.

- [#528](http://github.com/Nelson-numerical-software/nelson/issues/528): Assignment in cell did not work in this case `[c{:}] = ind2sub (dv, i)`
Expand Down
8 changes: 8 additions & 0 deletions THIRDPARTY.md
Expand Up @@ -298,3 +298,11 @@ A modern formatting library
> https://fmt.dev/latest/index.html
> https://github.com/fmtlib/fmt/blob/master/LICENSE.rst MIT license
- fast_float

fast_float number parsing library: 4x faster than strtod

> https://github.com/fastfloat/fast_float
> https://github.com/fastfloat/fast_float/blob/main/LICENSE-MIT MIT license
15 changes: 3 additions & 12 deletions modules/interpreter/src/cpp/AsciiToDouble.cpp
Expand Up @@ -26,25 +26,16 @@
#include <string>
#include <algorithm>
#include <cstdlib>
#include <unordered_map>
#include "fast_float/fast_float.h"
#include "AsciiToDouble.hpp"
//=============================================================================
namespace Nelson {
//=============================================================================
static std::unordered_map<std::string, double> map;
//=============================================================================
double
asciiToDouble(const std::string& str)
{
std::unordered_map<std::string, double>::const_iterator found = map.find(str);
if (found != map.end()) {
return found->second;
}
std::string s(str);
std::replace(s.begin(), s.end(), 'D', 'E');
std::replace(s.begin(), s.end(), 'd', 'e');
double value = atof(s.c_str());
map.emplace(str, value);
double value;
auto answer = fast_float::from_chars(str.data(), str.data() + str.size(), value);
return value;
}
//=============================================================================
Expand Down
232 changes: 232 additions & 0 deletions modules/interpreter/src/include/fast_float/ascii_number.h
@@ -0,0 +1,232 @@
#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H

#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>

#include "float_common.h"

namespace fast_float {

// Next function can be micro-optimized, but compilers are entirely
// able to optimize it well.
fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; }

fastfloat_really_inline uint64_t byteswap(uint64_t val) {
return (val & 0xFF00000000000000) >> 56
| (val & 0x00FF000000000000) >> 40
| (val & 0x0000FF0000000000) >> 24
| (val & 0x000000FF00000000) >> 8
| (val & 0x00000000FF000000) << 8
| (val & 0x0000000000FF0000) << 24
| (val & 0x000000000000FF00) << 40
| (val & 0x00000000000000FF) << 56;
}

fastfloat_really_inline uint64_t read_u64(const char *chars) {
uint64_t val;
::memcpy(&val, chars, sizeof(uint64_t));
#if FASTFLOAT_IS_BIG_ENDIAN == 1
// Need to read as-if the number was in little-endian order.
val = byteswap(val);
#endif
return val;
}

fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) {
#if FASTFLOAT_IS_BIG_ENDIAN == 1
// Need to read as-if the number was in little-endian order.
val = byteswap(val);
#endif
::memcpy(chars, &val, sizeof(uint64_t));
}

// credit @aqrit
fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) {
const uint64_t mask = 0x000000FF000000FF;
const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
val -= 0x3030303030303030;
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
return uint32_t(val);
}

fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept {
return parse_eight_digits_unrolled(read_u64(chars));
}

// credit @aqrit
fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept {
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
0x8080808080808080));
}

fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept {
return is_made_of_eight_digits_fast(read_u64(chars));
}

typedef span<const char> byte_span;

struct parsed_number_string {
int64_t exponent{0};
uint64_t mantissa{0};
const char *lastmatch{nullptr};
bool negative{false};
bool valid{false};
bool too_many_digits{false};
// contains the range of the significant digits
byte_span integer{}; // non-nullable
byte_span fraction{}; // nullable
};

// Assuming that you use no more than 19 digits, this will
// parse an ASCII string.
fastfloat_really_inline
parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept {
const chars_format fmt = options.format;
const char decimal_point = options.decimal_point;

parsed_number_string answer;
answer.valid = false;
answer.too_many_digits = false;
answer.negative = (*p == '-');
if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
++p;
if (p == pend) {
return answer;
}
if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
return answer;
}
}
const char *const start_digits = p;

uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)

while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
p += 8;
}
while ((p != pend) && is_integer(*p)) {
// a multiplication by 10 is cheaper than an arbitrary integer
// multiplication
i = 10 * i +
uint64_t(*p - '0'); // might overflow, we will handle the overflow later
++p;
}
const char *const end_of_integer_part = p;
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
answer.integer = byte_span(start_digits, size_t(digit_count));
int64_t exponent = 0;
if ((p != pend) && (*p == decimal_point)) {
++p;
const char* before = p;
// can occur at most twice without overflowing, but let it occur more, since
// for integers with many digits, digit parsing is the primary bottleneck.
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
p += 8;
}
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
++p;
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
}
exponent = before - p;
answer.fraction = byte_span(before, size_t(p - before));
digit_count -= exponent;
}
// we must have encountered at least one integer!
if (digit_count == 0) {
return answer;
}
int64_t exp_number = 0; // explicit exponential part
if ((fmt & chars_format::scientific) && (p != pend)
&& (('e' == *p) || ('E' == *p) || ('d' == *p) || ('D' == *p))) {
const char * location_of_e = p;
++p;
bool neg_exp = false;
if ((p != pend) && ('-' == *p)) {
neg_exp = true;
++p;
} else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
++p;
}
if ((p == pend) || !is_integer(*p)) {
if(!(fmt & chars_format::fixed)) {
// We are in error.
return answer;
}
// Otherwise, we will be ignoring the 'e'.
p = location_of_e;
} else {
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
if (exp_number < 0x10000000) {
exp_number = 10 * exp_number + digit;
}
++p;
}
if(neg_exp) { exp_number = - exp_number; }
exponent += exp_number;
}
} else {
// If it scientific and not fixed, we have to bail out.
if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
}
answer.lastmatch = p;
answer.valid = true;

// If we frequently had to deal with long strings of digits,
// we could extend our code by using a 128-bit integer instead
// of a 64-bit integer. However, this is uncommon.
//
// We can deal with up to 19 digits.
if (digit_count > 19) { // this is uncommon
// It is possible that the integer had an overflow.
// We have to handle the case where we have 0.0000somenumber.
// We need to be mindful of the case where we only have zeroes...
// E.g., 0.000000000...000.
const char *start = start_digits;
while ((start != pend) && (*start == '0' || *start == decimal_point)) {
if(*start == '0') { digit_count --; }
start++;
}
if (digit_count > 19) {
answer.too_many_digits = true;
// Let us start again, this time, avoiding overflows.
// We don't need to check if is_integer, since we use the
// pre-tokenized spans from above.
i = 0;
p = answer.integer.ptr;
const char* int_end = p + answer.integer.len();
const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
while((i < minimal_nineteen_digit_integer) && (p != int_end)) {
i = i * 10 + uint64_t(*p - '0');
++p;
}
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
exponent = end_of_integer_part - p + exp_number;
} else { // We have a value with a fractional component.
p = answer.fraction.ptr;
const char* frac_end = p + answer.fraction.len();
while((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
i = i * 10 + uint64_t(*p - '0');
++p;
}
exponent = answer.fraction.ptr - p + exp_number;
}
// We have now corrected both exponent and i, to a truncated value
}
}
answer.exponent = exponent;
answer.mantissa = i;
return answer;
}

} // namespace fast_float

#endif

0 comments on commit 46181b3

Please sign in to comment.