A simplified machine learning container platform that helps teams get started with an automated workflow.
DISCLAIMER: dama is currently in alpha due to the lack of security and scaling, but still fun to try out!
Server default configurations in config.yml
These configurations are loaded by default if not overridden in config.yml
.
expire: "1300"
deployexpire: "86400"
uploadsize: 2000000000
envsize: 20
https:
listen: "0.0.0.0"
port: "8443"
debug: false
verifytls: false
db:
db: 0
maxretries: 20
docker:
endpoint: "unix:///var/run/docker.sock"
cpushares: 512
memory: 1073741824
gotty:
tls: false
These configurations need to be set in your environment variables.
# Server admin username and password
DamaUser # example: DamaUser="tim"
DamaPassword # example: DamaPassword="9e9692478ca848a19feb8e24e5506ec89"
# Redis database password if applicable
DBPassword # example: DBPassword="9e9692478ca848a19feb8e24e5506ec89"
All configurations types
images: ["perlogix:minimal"] # required / string array
expire: "1300" # string
deployexpire: "86400" # string
uploadsize: 2000000000 # int
envsize: 20 # int
https:
listen: "0.0.0.0" # string
port: "8443" # string
pem: "/opt/dama.pem" # required / string
key: "/opt/dama.key" # required / string
debug: false # bool
verifytls: false # bool
db:
network: "unix" # required / string
address: "./tmp/redis.sock" # required / string
db: 0 # int
maxretries: 20 # int
docker:
endpoint: "unix:///var/run/docker.sock" # string
cpushares: 512 # int
memory: 1073741824 # int
gotty:
tls: false # bool
These environment variables need to be exported in order to use dama-cli.
DAMA_SERVER # example: export DAMA_SERVER="https://localhost:8443/"
DAMA_USER # example: export DAMA_USER="tim"
DAMA_KEY # example: export DAMA_KEY="9e9692478ca848a19feb8e24e5506ec89"
Usage: dama [options] <args>
-new Create a new environment from scratch and delete the old one
-run Create environment and run with dama.yml
-file Run with dama.yml in different directory
-env Create an environment variable or secret for runtime
-img Specify a docker image to be used instead of the default image
-dl Download file from workspace in your environment to your local computer
-up Upload files from your local computer to workspace in your environment
-deploy Deploy API and get your unique URI
-show-api Show API details: URL, Health and Type
-show-images Show images available to use
dama -new
dama -run
dama -run -file ../dama.yml
dama -env "AWS_ACCESS_KEY_ID=123,AWS_SECRET_ACCESS_KEY=234"
dama -deploy
dama -run -img tensorflow:lite
dama -show-images
dama -show-api
dama -up data.csv
dama -dl model.pkl
This a simple dama.yml
to setup your environment and run a Flask API.
image: "perlogix:minimal"
port: "5000"
pip: |
Flask==0.12.2
scikit-learn==0.19.1
numpy==1.14.2
scipy==1.0.0
python: |
from flask import Flask, request, jsonify
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.externals import joblib
X, y = datasets.load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model = RandomForestClassifier(random_state=101)
model.fit(X_train, y_train)
print("Score on the training set is: {:2}".format(model.score(X_train, y_train)))
print("Score on the test set is: {:.2}".format(model.score(X_test, y_test)))
model_filename = 'iris-rf-v1.0.pkl'
print("Saving model to {}...".format(model_filename))
joblib.dump(model, model_filename)
app = Flask(__name__)
MODEL = joblib.load('iris-rf-v1.0.pkl')
MODEL_LABELS = ['setosa', 'versicolor', 'virginica']
@app.route('/predict')
def predict():
sepal_length = request.args.get('sepal_length')
sepal_width = request.args.get('sepal_width')
petal_length = request.args.get('petal_length')
petal_width = request.args.get('petal_width')
features = [[sepal_length, sepal_width, petal_length, petal_width]]
label_index = MODEL.predict(features)
label = MODEL_LABELS[label_index[0]]
return jsonify(status='complete', label=label)
if __name__ == '__main__':
app.run(debug=False, host="0.0.0.0", threaded=True)
cURL API in sandbox or deploy
curl -ks https://localhost:8443/api/<insert sandbox key>/predict?sepal_length=5&sepal_width=3.1&petal_length=2.5&petal_width=1.2
Even simpler environment setup with model training.
image: "perlogix:tensorflow"
checkout: "https://github.com/aymericdamien/TensorFlow-Examples.git"
cmd: |
cd TensorFlow-Examples/examples/3_NeuralNetworks
python neural_network.py
All YAML configuration option types.
project # string - proejct name
env # string array - env variables
checkout # string - git checkout master branch
time_format # string - python time format used in container as env variable TIMESTAMP
setup_cmd # string - run setup /initial command before cmd or python
cmd # string - run BASH Linux command
python # string - run inline Python
pip # string - install pip packages
image # string - define container image for environment
port # string - port to expose for web service
git:
url # string - git URL
branch # string - git branch
sha # string - git SHA
aws_s3:
file # string - file to push or pull
dir # string - directory to push or pull
bucket_push # string - push file or dir to S3
bucket_pull # string - pull file or dir from S3
Add these lines to your Dockerfiles for your CLI to connect via websockets
RUN cd /usr/bin && curl -L https://github.com/yudai/gotty/releases/download/v1.0.1/gotty_linux_amd64.tar.gz | tar -xz
CMD ["/usr/bin/gotty", "--reconnect", "-w", "/bin/bash"]
make build
- Tokenize environment variables in DB
- Write test suite
- Provide Vagrant and Docker images
- Add scheduler / resource manager for multi-host container serving
- Rewrite auth middleware
- Swap out stdlib flags package for third-party package
- These docs stink!