Skip to content

Latest commit

 

History

History
118 lines (94 loc) · 6.1 KB

Process_Jacobian.rst

File metadata and controls

118 lines (94 loc) · 6.1 KB
tocdepth:3

Process Jacobian

.. sectionauthor:: Joseph S Motyka <jmotyka at aceinna.com>


As the system is nonlinear, the vector \vec{f} cannot be used to propagate the covariance matrix, P. Instead the Process Jacobian, F, (a linearized version of the state-transition vector) is computed at each time step (based on the current system states) to propagate P forward in time:

F_{k-1} = \left.{ {\partial{\vec{f}}} \over {\partial{\vec{x}}} }\right|_{\vec{x}_{k-1},\vec{u}_{k-1}}

This requires taking the derivative of each state-equation with respect to each state. Each row of the Jacobian corresponds to a specific state-equation; each column of the matrix corresponds to a specific system state. Performing this operation results in:

F = I_{16} + {
               \begin{bmatrix} {
                                 \begin{array}{ccccc}
                                                     {0_{3}} &
                                                     {I_{3}} &
                                                     {0_{3 \times 4}} &
                                                     {0_{3}} &
                                                     {0_{3}}
                                                     \cr
                                                     {0_{3}} &
                                                     {0_{3}} &
                                                     {\partial{v}\partial{q}} &
                                                     {0_{3}} &
                                                     {-{^{N}{R}^{B}}}
                                                     \cr
                                                     {0_{4 \times 3}} &
                                                     {0_{4 \times 3}} &
                                                     {{{1} \over {2}} \cdot \Omega} &
                                                     {-{{1} \over {2}} \cdot \Xi} &
                                                     {0_{4 \times 3}}
                                                     \cr
                                                     {0_{3}} &
                                                     {0_{3}} &
                                                     {0_{3 \times 4}} &
                                                     {0_{3}} &
                                                     {0_{3}}
                                                     \cr
                                                     {0_{3}} &
                                                     {0_{3}} &
                                                     {0_{3 \times 4}} &
                                                     {0_{3}} &
                                                     {0_{3}}
                                 \end{array}
               } \end{bmatrix}
             } \cdot {dt}

The one new term in the matrix, {\partial{v}\partial{q}} is defined as:

{\partial{v}\partial{q}} \equiv {
                                  2 \cdot \overline{Q}_{F} \cdot { \begin{bmatrix} {
                                                                                     \begin{array}{cc}
                                                                                                         {0} &
                                                                                                         {\begin{pmatrix} { {\vec{a}^{B}} } \end{pmatrix} ^{T}}
                                                                                                         \cr
                                                                                                         {\vec{a}^{B}} &
                                                                                                         {-\begin{bmatrix} { {\vec{a}^{B}} \times } \end{bmatrix}}
                                                                                     \end{array}
                                                                   } \end{bmatrix}
                                                                 }
                                }

where \overline{Q}_{F} is:

\overline{Q}_{F} &= {
                      \begin{bmatrix} {
                                        \begin{array}{cccc}
                                                            {q_{1}} &
                                                            {q_{0}} &
                                                            {-q_{3}} &
                                                            {q_{2}}
                                                            \cr
                                                            {q_{2}} &
                                                            {q_{3}} &
                                                            {q_{0}} &
                                                            {-q_{1}}
                                                            \cr
                                                            {q_{3}} &
                                                            {-q_{2}} &
                                                            {q_{1}} &
                                                            {q_{0}}
                                        \end{array}
                      } \end{bmatrix}
                    } \\
                    {\hspace{5mm}} \\
                 &= {
                      \begin{bmatrix} {
                                        {\vec{q}_{v}} \hspace{5mm} {q_0 \cdot I_{3} + \begin{bmatrix} { {\vec{q}_{v}} \times } \end{bmatrix}}
                      } \end{bmatrix}
                    }

and

\vec{a}^{B} = \vec{a}_{meas}^{B} - \vec{a}_{bias}^{B}