Skip to content
Branch: master
Find file Copy path
Find file Copy path
5 contributors

Users who have contributed to this file

@shelhamer @MartinThoma @wasnot @mzsanford @drewabbot
99 lines (84 sloc) 3.46 KB
#!/usr/bin/env python
Classifier is an image classifier specialization of Net.
import numpy as np
import caffe
class Classifier(caffe.Net):
Classifier extends Net for image class prediction
by scaling, center cropping, or oversampling.
image_dims : dimensions to scale input for cropping/sampling.
Default is to scale to net input size for whole-image crop.
mean, input_scale, raw_scale, channel_swap: params for
preprocessing options.
def __init__(self, model_file, pretrained_file, image_dims=None,
mean=None, input_scale=None, raw_scale=None,
caffe.Net.__init__(self, model_file, caffe.TEST, weights=pretrained_file)
# configure pre-processing
in_ = self.inputs[0]
self.transformer =
{in_: self.blobs[in_].data.shape})
self.transformer.set_transpose(in_, (2, 0, 1))
if mean is not None:
self.transformer.set_mean(in_, mean)
if input_scale is not None:
self.transformer.set_input_scale(in_, input_scale)
if raw_scale is not None:
self.transformer.set_raw_scale(in_, raw_scale)
if channel_swap is not None:
self.transformer.set_channel_swap(in_, channel_swap)
self.crop_dims = np.array(self.blobs[in_].data.shape[2:])
if not image_dims:
image_dims = self.crop_dims
self.image_dims = image_dims
def predict(self, inputs, oversample=True):
Predict classification probabilities of inputs.
inputs : iterable of (H x W x K) input ndarrays.
oversample : boolean
average predictions across center, corners, and mirrors
when True (default). Center-only prediction when False.
predictions: (N x C) ndarray of class probabilities for N images and C
# Scale to standardize input dimensions.
input_ = np.zeros((len(inputs),
for ix, in_ in enumerate(inputs):
input_[ix] =, self.image_dims)
if oversample:
# Generate center, corner, and mirrored crops.
input_ =, self.crop_dims)
# Take center crop.
center = np.array(self.image_dims) / 2.0
crop = np.tile(center, (1, 2))[0] + np.concatenate([
-self.crop_dims / 2.0,
self.crop_dims / 2.0
crop = crop.astype(int)
input_ = input_[:, crop[0]:crop[2], crop[1]:crop[3], :]
# Classify
caffe_in = np.zeros(np.array(input_.shape)[[0, 3, 1, 2]],
for ix, in_ in enumerate(input_):
caffe_in[ix] = self.transformer.preprocess(self.inputs[0], in_)
out = self.forward_all(**{self.inputs[0]: caffe_in})
predictions = out[self.outputs[0]]
# For oversampling, average predictions across crops.
if oversample:
predictions = predictions.reshape((len(predictions) // 10, 10, -1))
predictions = predictions.mean(1)
return predictions
You can’t perform that action at this time.