Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

shallue_van_de_woestijne rewrite #286

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
93 changes: 55 additions & 38 deletions src/modules/generator/main_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -107,61 +107,78 @@ static void shallue_van_de_woestijne(secp256k1_ge* ge, const secp256k1_fe* t) {
x2 = -(x1 + 1)
x3 = 1 + 1/w^2

To avoid the 2 divisions, compute the above in numerator/denominator form:
wn = c * t
wd = 1 + 7 + t^2
x1n = d*wd - t*wn
x1d = wd
x2n = -(x1n + wd)
x2d = wd
x3n = wd^2 + c^2 * t^2
x3d = (c * t)^2

The joint denominator j = wd * c^2 * t^2, and
1 / x1d = 1/j * c^2 * t^2
1 / x2d = x3d = 1/j * wd
To avoid the 2 divisions, compute the joint denominator j = wd * x3d, where
wd = 1 + b + t^2
x3d = c^2 * t^2 = -3 * t^2

so that if j != 0, then

1 / wd = 1/j * x3d
1 / x3d = 1/j * wd

x1 = d - c * t^2 * x3d / j
x3 = 1 + wd^3 / j

If j = 0, the function outputs the point (d, f(d)). This point is equal
to (x1, f(x1)) as defined above if division by 0 is defined to be 0. In
below code this is not special-cased because secp256k1_fe_inv returns 0
on input 0.

j = 0 happens only when t = 0 (since wd != 0 as -8 is not a square).
*/

static const secp256k1_fe c = SECP256K1_FE_CONST(0x0a2d2ba9, 0x3507f1df, 0x233770c2, 0xa797962c, 0xc61f6d15, 0xda14ecd4, 0x7d8d27ae, 0x1cd5f852);
static const secp256k1_fe negc = SECP256K1_FE_CONST(0xf5d2d456, 0xcaf80e20, 0xdcc88f3d, 0x586869d3, 0x39e092ea, 0x25eb132b, 0x8272d850, 0xe32a03dd);
static const secp256k1_fe d = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40);
static const secp256k1_fe b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 7);
static const secp256k1_fe b_plus_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 8);

secp256k1_fe wn, wd, x1n, x2n, x3n, x3d, jinv, tmp, x1, x2, x3, alphain, betain, gammain, y1, y2, y3;
secp256k1_fe wd, x3d, jinv, tmp, x1, x2, x3, alphain, betain, gammain, y1, y2, y3;
int alphaquad, betaquad;

secp256k1_fe_mul(&wn, &c, t); /* mag 1 */
/* wd = t^2 */
secp256k1_fe_sqr(&wd, t); /* mag 1 */
secp256k1_fe_add(&wd, &b_plus_one); /* mag 2 */
secp256k1_fe_mul(&tmp, t, &wn); /* mag 1 */
secp256k1_fe_negate(&tmp, &tmp, 1); /* mag 2 */
secp256k1_fe_mul(&x1n, &d, &wd); /* mag 1 */
secp256k1_fe_add(&x1n, &tmp); /* mag 3 */
x2n = x1n; /* mag 3 */
secp256k1_fe_add(&x2n, &wd); /* mag 5 */
secp256k1_fe_negate(&x2n, &x2n, 5); /* mag 6 */
secp256k1_fe_mul(&x3d, &c, t); /* mag 1 */
secp256k1_fe_sqr(&x3d, &x3d); /* mag 1 */
secp256k1_fe_sqr(&x3n, &wd); /* mag 1 */
secp256k1_fe_add(&x3n, &x3d); /* mag 2 */
secp256k1_fe_mul(&jinv, &x3d, &wd); /* mag 1 */
/* x1 = -c * t^2 */
secp256k1_fe_mul(&x1, &negc, &wd); /* mag 1 */
/* x3d = t^2 */
x3d = wd; /* mag 1 */
/* x3d = 3 * t^2 */
secp256k1_fe_mul_int(&x3d, 3); /* mag 3 */
/* x3d = -3 * t^2 */
secp256k1_fe_negate(&x3d, &x3d, 3); /* mag 4 */
/* wd = 1 + b + t^2 */
secp256k1_fe_add_int(&wd, SECP256K1_B + 1); /* mag 2 */
/* jinv = wd * x3d */
secp256k1_fe_mul(&jinv, &wd, &x3d); /* mag 1 */
/* jinv = 1/(wd * x3d) */
secp256k1_fe_inv(&jinv, &jinv); /* mag 1 */
secp256k1_fe_mul(&x1, &x1n, &x3d); /* mag 1 */
/* x1 = -c * t^2 * x3d */
secp256k1_fe_mul(&x1, &x1, &x3d); /* mag 1 */
/* x1 = -c * t^2 * x3d * 1/j */
secp256k1_fe_mul(&x1, &x1, &jinv); /* mag 1 */
secp256k1_fe_mul(&x2, &x2n, &x3d); /* mag 1 */
secp256k1_fe_mul(&x2, &x2, &jinv); /* mag 1 */
secp256k1_fe_mul(&x3, &x3n, &wd); /* mag 1 */
/* x1 = d + -c * t^2 * x3d * 1/j */
secp256k1_fe_add(&x1, &d); /* mag 2 */
/* x2 = x1 */
x2 = x1; /* mag 2 */
/* x2 = x1 + 1 */
secp256k1_fe_add_int(&x2, 1); /* mag 3 */
/* x2 = - (x1 + 1) */
secp256k1_fe_negate(&x2, &x2, 3); /* mag 4 */
/* x3 = wd^2 */
secp256k1_fe_sqr(&x3, &wd); /* mag 1 */
/* x3 = wd^3 */
secp256k1_fe_mul(&x3, &x3, &wd); /* mag 1 */
/* x3 = wd^3 * 1/j */
secp256k1_fe_mul(&x3, &x3, &jinv); /* mag 1 */
/* x3 = 1 + (wd^3 * 1/j) */
secp256k1_fe_add_int(&x3, 1); /* mag 2 */

secp256k1_fe_sqr(&alphain, &x1); /* mag 1 */
secp256k1_fe_mul(&alphain, &alphain, &x1); /* mag 1 */
secp256k1_fe_add(&alphain, &b); /* mag 2 */
secp256k1_fe_add_int(&alphain, SECP256K1_B); /* mag 2 */
secp256k1_fe_sqr(&betain, &x2); /* mag 1 */
secp256k1_fe_mul(&betain, &betain, &x2); /* mag 1 */
secp256k1_fe_add(&betain, &b); /* mag 2 */
secp256k1_fe_add_int(&betain, SECP256K1_B); /* mag 2 */
secp256k1_fe_sqr(&gammain, &x3); /* mag 1 */
secp256k1_fe_mul(&gammain, &gammain, &x3); /* mag 1 */
secp256k1_fe_add(&gammain, &b); /* mag 2 */
secp256k1_fe_add_int(&gammain, SECP256K1_B); /* mag 2 */

alphaquad = secp256k1_fe_sqrt(&y1, &alphain);
betaquad = secp256k1_fe_sqrt(&y2, &betain);
Expand Down
10 changes: 6 additions & 4 deletions src/modules/generator/tests_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,9 @@ static void test_generator_api(void) {

static void test_shallue_van_de_woestijne(void) {
/* Matches with the output of the shallue_van_de_woestijne.sage SAGE program */
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do you want to change the loop there to cover the new points? The script could also print out -c and d.

"No" is fine as an answer. :)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I did look into this, but I couldn't figure out an elegant way to change the sage code myself, being neither a sage nor a python expert. I'd welcome such a patch though.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

static const secp256k1_ge_storage results[32] = {
static const secp256k1_ge_storage results[34] = {
SECP256K1_GE_STORAGE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40, 0x4218f20a, 0xe6c646b3, 0x63db6860, 0x5822fb14, 0x264ca8d2, 0x587fdd6f, 0xbc750d58, 0x7e76a7ee),
SECP256K1_GE_STORAGE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40, 0x4218f20a, 0xe6c646b3, 0x63db6860, 0x5822fb14, 0x264ca8d2, 0x587fdd6f, 0xbc750d58, 0x7e76a7ee),
SECP256K1_GE_STORAGE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c, 0x0225f529, 0xee75acaf, 0xccfc4560, 0x26c5e46b, 0xf80237a3, 0x3924655a, 0x16f90e88, 0x085ed52a),
SECP256K1_GE_STORAGE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c, 0xfdda0ad6, 0x118a5350, 0x3303ba9f, 0xd93a1b94, 0x07fdc85c, 0xc6db9aa5, 0xe906f176, 0xf7a12705),
SECP256K1_GE_STORAGE_CONST(0x2c5cdc9c, 0x338152fa, 0x85de92cb, 0x1bee9907, 0x765a922e, 0x4f037cce, 0x14ecdbf2, 0x2f78fe15, 0x56716069, 0x6818286b, 0x72f01a3e, 0x5e8caca7, 0x36249160, 0xc7ded69d, 0xd51913c3, 0x03a2fa97),
Expand Down Expand Up @@ -87,7 +89,7 @@ static void test_shallue_van_de_woestijne(void) {
secp256k1_fe fe;
secp256k1_ge_storage ges;
int i, s;
for (i = 1; i <= 16; i++) {
for (i = 0; i <= 16; i++) {
secp256k1_fe_set_int(&fe, i);

for (s = 0; s < 2; s++) {
Expand All @@ -96,9 +98,9 @@ static void test_shallue_van_de_woestijne(void) {
secp256k1_fe_normalize(&fe);
}
shallue_van_de_woestijne(&ge, &fe);
CHECK(secp256k1_ge_is_valid_var(&ge));
secp256k1_ge_to_storage(&ges, &ge);

CHECK(secp256k1_memcmp_var(&ges, &results[i * 2 + s - 2], sizeof(secp256k1_ge_storage)) == 0);
CHECK(secp256k1_memcmp_var(&ges, &results[i * 2 + s], sizeof(secp256k1_ge_storage)) == 0);
}
}
}
Expand Down