Tensorflow demo code for paper Distributional Adversarial Networks by Chengtao Li*, David Alvarez-Melis*, Keyulu Xu, Stefanie Jegelka and Suvrit Sra.
The main difference with the original GAN method is that the Discriminator is operates on samples (of n>1 examples) rather than a single sample point to discriminate between real and generated distributions. In the paper we propose two such type of methods:
- A single-sample classifier
$M_S$ which classifies samples as fake or real (i.e. a sample-based analogue to the original GAN classifier) - A two-sample discriminator
$M_{2S}$ which must decide whether two samples are drawn from the same distribution or not (reminiscent of two-sample tests in the the statistics literature)
Both of these methods relies on a first stage encoder (Deep Mean Encoder), which embeds and aggregates individual examples to obtain a fixed-size representation of the sample. These vectors are then used as inputs to the two types of classifiers.
A schematic representation of these two methods is:
Python 2.7
tensorflow >= 1.0
numpy
scipy
matplotlib
A self-contained implementation of the two DAN models applied to a simple 2D mixture of gaussians examples can be found in this notebook in toy
folder. Some of the visualization tools were borrowed from here.
Vanilla GAN | DAN-S |
---|---|
DAN-2S | Ground Truth |
---|---|
This part of code can be used to reproduce experimental results on MNIST digit generation. It lies in mnist
folder and is built based on DCGAN Implementation.
To train the adversarial network, run
python main_mnist.py --model_mode [MODEL_MODE] --is_train True
Here MODEL_MODE
can be one of gan
(for vanilla GAN model), dan_s
(for DAN-S) or dan_2s
(for DAN-2S).
To evaluate how well the model recovers the mode frequencies, one need an accurate classifier on MNIST dataset as an approximate label indicator. The code for the classifier is in mnist_classifier.py
and is adapted from Tensorflow-Examples. To train the classifier, run
python mnist_classifier.py
The classifier has an accuracy of ~97.6% on test set after 10 epochs and is stored in the folder mnist_cnn
for later evaluation. To use the classifier to estimate the label frequencies of generated figures, run
python main_mnist.py --model_mode [MODEL_MODE] --is_train False
The result will be saved to the file specified by savepath
. A random run gives the following results with different model_mode
's.
Vanilla GAN | DAN-S | DAN-2S | |
---|---|---|---|
Entropy (the higher the better) | 1.623 | 2.295 | 2.288 |
TV Dist (the lower the better) | 0.461 | 0.047 | 0.061 |
L2 Dist (the lower the better) | 0.183 | 0.001 | 0.003 |
The following visualization shows how the randomly generated figures evolve through 100 epochs with different models. While for vanilla GAN the figures mostly concentrate on ''easy-to-generate'' modes like 1
, models within DAN framework generate figures that have better coverages over different modes.
Vanilla GAN | DAN-S | DAN-2S |
---|---|---|
This part of code can be used to reproduce experimental results of domain adaptation from MNIST to MNIST-M. It lies in dann
folder and is built based on DANN Implementation.
Run the following commands to download and create MNIST-M dataset.
curl -O http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz
python create_mnistm.py
(instructions from here)
To train the adversarial network, run
python mnist_dann.py --model_mode [MODEL_MODE]
Here MODEL_MODE
can be one of gan
(for vanilla GAN model), dan_s
(for DAN-S) or dan_2s
(for DAN-2S). A random run with different different modes gives the following prediction accuracy on MNIST-M when the classifier is trained on MNIST.
Vanilla GAN | DAN-S | DAN-2S | |
---|---|---|---|
Accuracy | 77.0% | 78.8% | 80.4% |
If you use this code for your research, please cite our paper:
@article{li2017distributional,
title={Distributional Adversarial Networks},
author={Chengtao Li, David Alvarez-Melis, Keyulu Xu, Stefanie Jegelka, Suvrit Sra},
journal={arXiv preprint arXiv:1706.09549},
year={2017}
}
Please email to ctli@mit.edu should you have any questions, comments or suggestions.