Deep learning gateway on Raspberry Pi
JavaScript Python Shell CSS
Switch branches/tags
Nothing to show
Latest commit 9c082a3 May 20, 2017 Bofu Chen (bafu) Merge branch 'master' of https://github.com/DT42/BerryNet

README.md

BerryNet: Deep Learning Gateway on Raspberry Pi

This project turns Raspberry Pi 3 into an intelligent gateway with deep learning running on it. No internet connection is required, everything is done locally on the Raspberry Pi 3 itself. At DT42, we believe that bringing deep learning to edge devices is the trend towards the future. It not only saves costs of data transmission and storage but also makes devices able to respond according to the events shown in the images or videos without connecting to the cloud.

Figure 1

Figure 1 shows the software architecture of the project, we use Node.js, MQTT and an AI engine to analyze images or video frames with deep learning. So far, there are two supported AI engines, the classification engine and the object detection engine. Figure 2 shows the differences between classification and object detection.

Figure 2

One of the application of this intelligent gateway is to use the camera to monitor the place you care about. For example, Figure 3 shows the analyzed results from the camera hosted in the DT42 office. The frames were captured by the IP camera and they were submitted into the AI engine. The output from the AI engine will be shown in the dashboard. We are working on the Email and IM notification so you can get a notification when there is a dog coming into the meeting area with the next release.

Figure 3

AI Engines

The current supported AI Engines leverage work from the following projects:

The current supported classification model is Inception v3 [1] and the detection model is TinyYOLO [2]

Installation

$ git clone https://github.com/DT42/BerryNet.git
$ cd BerryNet
$ ./configure

Start and Stop BerryNet

BerryNet is managed by systemd. You can manage BerryNet via berrynet-manager:

$ berrynet-manager [start | stop | status | log]

Configuration

All the configurations are in config.js.

  • Choose AI Engine.

    • Two types of AI engines currently: object classifier and object detector.
  • Configure IP camera's snapshot access interface.

  • MQTT topics.

Dashboard

Open dashboard on RPi3 (with touch screen)

Open browser and enter the URL:

http://localhost:8080/index.html#source=dashboard.json

The default dashboard configuration file will be loaded.

Open dashboard on browser from any computer

Open browser and enter the URL:

http://<gateway-ip>:8080/index.html#source=dashboard.json

Click the data sources, and change MQTT broker's IP address to the gateway's IP.

For more details about dashboard configuration (e.g. how to add widgets), please refer to freeboard project.

Provide Image Input

To capture an image via Pi camera

$ mosquitto_pub -h localhost -t berrynet/event/camera -m snapshot_picam

To capture an image via configured IP camera

$ mosquitto_pub -h localhost -t berrynet/event/camera -m snapshot_ipcam

To provide a local image

$ mosquitto_pub -h localhost -t berrynet/event/localImage -m <image_path>

Discussion

Please refer to the Google Group for questions, suggestions, or any idea discussion.