Skip to content

Decadz/Genetic-Programming-with-Rademacher-Complexity

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Genetic Programming with Rademacher Complexity

This repository contains code for reproducing the experiments in the paper "Genetic Programming with Rademacher Complexity for Symbolic Regression" by Christian Raymond, Qi Chen, Bing Xue, and Mengjie Zhang.

Contents

Implementation of Genetic Programming for Symbolic Regression (GP-SR) and the newly proposed Genetic Programming with Rademacher Complexity (GPRC):

Code Reproducibility:

The code has not been comprehensively checked and re-run since refactoring. If you're having any issues, find a problem/bug or cannot reproduce similar results as the paper please open an issue or email me.

Reference

If you use our library or find our research of value please consider citing our papers with the following Bibtex entry:

@inproceedings{raymond2019genetic,
  title={Genetic Programming with Rademacher Complexity for Symbolic Regression},
  author={Raymond, Christian and Chen, Qi and Xue, Bing and Zhang, Mengjie},
  booktitle={2019 IEEE Congress on Evolutionary Computation (CEC)},
  pages={2657--2664},
  year={2019},
  organization={IEEE}
}

About

Code for the GP-RC algorithm presented in "Genetic Programming with Rademacher Complexity for Symbolic Regression" (CEC-2019). Paper Link: https://ieeexplore.ieee.org/document/8790341

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages