Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MPAS-seaice documentation #6356

Merged
merged 15 commits into from
May 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
Binary file not shown.
330 changes: 330 additions & 0 deletions components/mpas-seaice/docs/dev-guide/index.md

Large diffs are not rendered by default.

Binary file added components/mpas-seaice/docs/figures/mesh.png
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
44 changes: 44 additions & 0 deletions components/mpas-seaice/docs/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
The E3SM Sea Ice Model (MPAS-seaice)
====================================

MPAS-seaice is an unstructured-mesh sea-ice model that uses the Modeling for Prediction Across Scales (MPAS) framework, allowing enhanced horizontal resolution in regions of interest. MPAS-seaice incorporates many of the methods used in the Los Alamos CICE sea-ice model, but adapted to the Spherical Centroidal Vornoi Tesselation (SCVT) meshes used by the MPAS framework.

* The [MPAS-seaice User's Guide](user-guide/index.md) outlines the MPAS Framework, on which MPAS-seaice is built, and Icepack, the column physics submodule in MPAS-seaice, and it provides guidance for controlling MPAS-seaice within E3SM.
* The [MPAS-seaice Technical Guide](tech-guide/index.md) describes the mesh and major physics components underlying MPAS-seaice code and its coupling to E3SM.
* The [MPAS-seaice Developer's Guide](dev-guide/index.md) provides additional information relevant for model development, including the Icepack interface and development/testing scripts.

**Icepack**
-----------

MPAS-seaice incorporates the Icepack software package for sea ice column physics, developed by the [CICE Consortium](https://github.com/cice-consortium), as a submodule. [Icepack documentation](https://e3sm-icepack.readthedocs.io/en/latest/). provides a complete description of the column physics and instructions for using Icepack as a standalone model. The source code for this documentation is maintained in [E3SM's Icepack fork](https://github.com/E3SM-Project/Icepack/) (navigate to the desired branch, then to doc/source/, etc). This is the documentation associated with the latest Icepack version that has been merged into E3SM, plus any documentation changes made within E3SM itself. This documentation is fully rendered in [E3SM's Icepack readthedocs](https://e3sm-icepack.readthedocs.io/en/latest/).

<!--
If needed, documentation for the most recent Icepack release incorporated in E3SM can be found in the CICE Consortium's readthedocs project area:

* Check the [release tags](https://github.com/E3SM-Project/Icepack/tags) to get the release number.
* Choose the release version of the documentation from the [Icepack release table](https://github.com/CICE-Consortium/Icepack/wiki/Icepack-Release-Table).
-->

[Guidance for developing Icepack documentation](https://github.com/CICE-Consortium/About-Us/wiki/Documentation-Workflow-Guide) includes instructions for building the readthedocs documentation yourself.

**MPAS-seaice code structure**
------------------------------

Some MPAS-seaice functionality is sourced from the MPAS Framework:
``E3SM/components/mpas-framework``. In particular, see ``E3SM/components/mpas-framework/core_seaice``.

Code structure within the ``mpas-seaice/``component-level directory:

| Directories | Function |
| ----------- | -------- |
| ``bld`` | namelist configuration files |
| ``cime_config`` | build and configuration scripts |
| ``docs`` | this documentation |
| ``driver`` | coupling modules |
| ``src`` | source code for the model physics and output |
| ``src/analysis_members`` | source code for model output |
| ``src/column`` | source code for the (original) ``column_package`` |
| ``src/icepack`` | link to the icepack submodule |
| ``src/model_forward`` | top-level mpas-seaice modules |
| ``src/shared`` | dynamics and general-purpose modules (e.g. mesh, constants) |
| ``testing`` | testing scripts |
47 changes: 47 additions & 0 deletions components/mpas-seaice/docs/references.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
References
==========

Bitz, C. M., and W. H. Lipscomb (1999). An energy-conserving thermodynamic model of sea ice, Journal of Geophysical Research: Oceans, 104(C7), 15,669–15,677, doi: 10.1029/1999JC900100.

Briegleb, B. P., and B. Light (2007). A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate Sys- tem Model, Tech. Rep. NCAR/TN-472+STR, National Center for Atmospheric Research, Boulder, Colorado USA.

Dang, C., C. S. Zender, and M. G. Flanner (2019). Intercomparison and improvement of two-stream shortwave radiative transfer schemes in earth system models for a unified treatment of cryospheric surfaces. The Cryosphere, 13:2325–2343. doi:10.5194/tc-13-2325-2019.

Dasgupta, G. (2003). Interpolants within convex polygons: Wachpress' shape functions. Journal of Aerospace Engineering, 16, 1–8. <https://doi.org/10.1061/(ASCE)0893-1321(2003)16:1(1)>

Dukowicz, J. K., & Baumgardner, J. R. (2000). Incremental remapping as a transport/advection algorithm. Journal of Computational Physics, 160(1), 318–335. <https://doi.org/10.1006/jcph.2000.6465>

Dunavant, D. A. (1985). High degree efficient symmetrical Gaussian quadrature rules for the triangle. International Journal for Numerical Methods in Engineering, 21(6), 1129–1148. <https://doi.org/10.1002/nme.1620210612>

Flocco, D., D. L. Feltham, and A. K. Turner (2010). Incorporation of a physically based melt pond scheme into the sea ice component of a climate model, Journal of Geophysi- cal Research: Oceans, 115(C8), doi:10.1029/2009JC005568, C08012.

Golaz, J.-C., Caldwell, P. M.,
Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., et al. (2019). The DOE E3SM coupled model version 1: Overview and evaluation at
standard resolution. Journal of Advances in Modeling Earth
Systems, 11, 2089–2129. <https://doi.org/10.1029/2018MS001603>

Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., et al. (2022). The DOE E3SM Model version 2: Overview of the physical model and initial model evaluation. Journal of Advances in Modeling Earth Systems, 14, e2022MS003156. <https://doi.org/10.1029/2022MS003156>

Hibler, W. D. III (1979). A dynamic thermodynamic sea ice model. Journal of Physical Oceanography, 9(4), 815–846. <https://doi.org/10.1175/1520-0485(1979)009&lt;0815:ADTSIM&gt;2.0.CO;2>

Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke (2012). Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on arctic sea ice, Journal of Climate, 25(5), 1413–1430, doi:10.1175/JCLI-D-11-00078.1.

<!-- Elizabeth Hunke, Richard Allard, David Bailey, Anthony Craig, Anders Damsgaard, Frederic Dupont, Alice DuVivier, Marika Holland, Nicole Jeffery, Jean-Francois Lemieux, Christopher Newman, Andrew Roberts, Adrian Turner, Matthew Turner, & Michael Winton.-->
Hunke, E., et al. (2018). CICE-Consortium/Icepack. Zenodo. <https://doi.org/10.5281/zenodo.1213462>

Hunke, E. C., & Dukowicz, J. K. (1997). An elastic-viscous-plastic model for sea ice dynamics. Journal of Physical Oceanography, 27(9), 1849–1867. <https://doi.org/10.1175/1520-0485(1997)027&lt;1849:AEVPMF&gt;2.0.CO;2>

Hunke, E. C., & Dukowicz, J. K. (2002). The elastic-viscous-plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere—Incorporation of metric terms. Monthly Weather Review, 130(7), 1848–1865.

Hunke, E. C., Hebert, D. A., & Lecomte, O. (2013). Level-ice melt ponds in the Los Alamos sea ice model, CICE. Ocean Modelling, 71, 26–42. <https://doi.org/10.1016/j.ocemod.2012.11.008>

Lipscomb, W. H. (2001). Remapping the thickness distribution in sea ice models, Journal of Geophysical Research: Oceans, 106(C7), 13,989–14,000, doi:10.1029/2000JC000518.

Lipscomb, W. H., & Hunke, E. C. (2004). Modeling sea ice transport using incremental remapping. Monthly Weather Review, 132(6), 1341–1354.

Lipscomb, W. H., Hunke, E. C., Maslowski, W., & Jakacki, J. (2007). Ridging, strength, and stability in high-resolution sea ice models. Journal of Geophysical Research, 112. C03S91. <https://doi.org/10.1029/2005JC003355>

Lipscomb, W. H., & Ringler, T. D. (2005). An incremental remapping transport scheme on a spherical geodesic grid. Monthly Weather Review, 133(8), 2335–2350. <https://doi.org/10.1175/MWR2983.1>

Turner, A. K., and E. C. Hunke (2015). Impacts of a mushy-layer thermodynamic ap- proach in global sea-ice simulations using the CICE sea-ice model, Journal of Geophys- ical Research: Oceans, 120(2), 1253–1275, doi:10.1002/2014JC010358.

Turner, A. K., E. C. Hunke, and C. M. Bitz (2013). Two modes of sea-ice gravity drainage: A parameterization for large-scale modeling, Journal of Geophysical Research: Oceans, 118(5), 2279–2294, doi:10.1002/jgrc.20171.

Turner, A. K., Lipscomb, W. H., Hunke, E. C., Jacobsen, D. W., Jeffery, N., Engwirda, D., Ringer, T. D., Wolfe, J. D. (2021). MPAS-seaice (v1.0.0): Sea-ice dynamics on unstructured Voronoi meshes. Geoscientific Model Development Discussions, 1–46. <https://doi.org/10.5194/gmd-2021-355>