Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add two bioenergy crops (switchgrass and Miscanthus) #884

Merged
merged 68 commits into from
May 25, 2020
Merged
Show file tree
Hide file tree
Changes from 58 commits
Commits
Show all changes
68 commits
Select commit Hold shift + click to select a range
ca9c1ab
add switchgrass and miscanthus
yanyanchengHydro Jan 11, 2020
cf476b4
add a parameter for cutting a certain fraction of crop leaf biomass a…
yanyanchengHydro Feb 24, 2020
da3b1a0
add a new biofuelc_harvest flux to store the cut fraction of crop car…
yanyanchengHydro Feb 24, 2020
32db241
add calculation for the new biofuelc_harvest flux
yanyanchengHydro Feb 24, 2020
526b28d
add a new biofueln_harvest flux to store the cut fraction of crop nit…
yanyanchengHydro Feb 24, 2020
c719862
cut a certain fraction of crop leaf biomass during offset period
yanyanchengHydro Feb 24, 2020
e30e87b
cut a certain fraction of crop leaf biomass during offset period
yanyanchengHydro Feb 24, 2020
7c3d10b
Delete CNPhenologyMod_cut_newFlux_newCutParam_N.F90
yanyanchengHydro Feb 24, 2020
bbe7037
add a new biofuelc_harvest flux to store the cut fraction of crop car…
yanyanchengHydro Mar 16, 2020
515ffe3
add a new biofueln_harvest flux to store the cut fraction of crop nit…
yanyanchengHydro Mar 16, 2020
0845638
cut a certain fraction of crop aboveground biomass during offset period
yanyanchengHydro Mar 16, 2020
6b75fcb
add calculation for the new biofuelc_to_cropprodc flux
yanyanchengHydro Mar 16, 2020
dbad63f
add calculation for biofuel product
yanyanchengHydro Mar 16, 2020
6582a3e
add calculation for biofuel product
yanyanchengHydro Mar 16, 2020
c499644
active pft ID for swithchgrass and miscanthus
yanyanchengHydro Mar 16, 2020
6ab1738
update leaf N and livestem N
yanyanchengHydro Mar 16, 2020
8e91a25
update leaf N and livestem N
yanyanchengHydro Mar 16, 2020
9825116
update CN balance check to include biofuel product pool
yanyanchengHydro Mar 16, 2020
dfd55db
Merge branch 'bioenergy_ctsm1.0.dev080' of github.com:yanyanchengHydr…
yanyanchengHydro Mar 16, 2020
39bdf9b
cut a certain fraction of crop aboveground biomass during offset period
yanyanchengHydro Mar 16, 2020
d2aad1f
add a parameter for cutting a certain fraction of crop aboveground bi…
yanyanchengHydro Mar 16, 2020
ce983ba
Fix restart routine for new bioenergy pool
billsacks Mar 16, 2020
3b3a330
Whitespace cleanup
billsacks Mar 16, 2020
c45206a
Remove unnecessary variable from associate
billsacks Mar 16, 2020
78da215
Bioenergy fluxes to product pools apply regardless of use_grainproduct
billsacks Mar 16, 2020
5beb9b1
Fix some indentation
billsacks Mar 17, 2020
e3e668c
Merge pull request #1 from billsacks/bioenergy_billsacks_fixes
yanyanchengHydro Mar 17, 2020
613e459
Merge branch 'bioenergy_ctsm1.0.dev080' of github.com:yanyanchengHydr…
yanyanchengHydro Mar 17, 2020
cefdaaa
fix indentation and remove unnecessary restart variables
yanyanchengHydro Mar 23, 2020
cd591c2
fix indentation
yanyanchengHydro Mar 23, 2020
c6f037a
move calculation of leafc_to_biofuelc to only for prognostic crops, c…
yanyanchengHydro Mar 23, 2020
39fcf07
remove unnecessary lines
yanyanchengHydro Mar 23, 2020
38ca1b3
fix indentation
yanyanchengHydro Mar 23, 2020
8e141ad
fix indentation
yanyanchengHydro Mar 23, 2020
0ec0288
fix indentation
yanyanchengHydro Mar 23, 2020
6e05416
add the biofuel_harvfrac parameter for cutting a certain fraction of …
yanyanchengHydro Mar 29, 2020
0bdea51
add leafc_to_biofuelc and livestemc_to_biofuelc fluxes
yanyanchengHydro Mar 29, 2020
69b0f94
add leafn_to_biofueln and livestemn_to_biofueln fluxes
yanyanchengHydro Mar 29, 2020
0e7aac4
cut a certain fraction of crop aboveground biomass during offset peri…
yanyanchengHydro Mar 29, 2020
e8aa3d6
move the harvested amounts into grain_to_cropprod pool at the radiati…
yanyanchengHydro Mar 29, 2020
93d88d3
remove variables for biofuel product
yanyanchengHydro Mar 29, 2020
0e31832
rm calculation for biofuel product
yanyanchengHydro Mar 29, 2020
4bc6598
rm CN balance check for biofuel_to_cropprod
yanyanchengHydro Mar 29, 2020
baa7066
add more document for biofuel_harvfrac
yanyanchengHydro Mar 30, 2020
5bf020b
fix identical
yanyanchengHydro Mar 30, 2020
9307d60
remove unrelevant comment
yanyanchengHydro Apr 1, 2020
e82d3f3
Merge branch 'master' into bioenergy_ctsm1.0.dev080
billsacks Apr 7, 2020
05cefc8
Merge pull request #2 from billsacks/bioenergy_ctsm1.0.dev080
yanyanchengHydro Apr 7, 2020
1bd02ba
Merge branch 'bioenergy_ctsm1.0.dev080' of github.com:yanyanchengHydr…
yanyanchengHydro Apr 7, 2020
03bf03d
add documents for changes relevant to bioenergy crops
yanyanchengHydro Apr 16, 2020
e5591e8
add documents for changes relevant to bioenergy crops
yanyanchengHydro Apr 16, 2020
52bd548
add documents for changes relevant to bioenergy crops
yanyanchengHydro Apr 16, 2020
9cc3609
update tech note
yanyanchengHydro Apr 25, 2020
d666d83
update tech note
yanyanchengHydro Apr 25, 2020
1ebabc4
Update doc/source/tech_note/Vegetation_Phenology_Turnover/CLM50_Tech_…
yanyanchengHydro May 9, 2020
9f73dfb
Update doc/source/tech_note/Crop_Irrigation/CLM50_Tech_Note_Crop_Irri…
yanyanchengHydro May 9, 2020
4f40771
Update doc/source/tech_note/Crop_Irrigation/CLM50_Tech_Note_Crop_Irri…
yanyanchengHydro May 9, 2020
7e31b64
Update doc/source/tech_note/Crop_Irrigation/CLM50_Tech_Note_Crop_Irri…
yanyanchengHydro May 9, 2020
9977b0a
Update doc/source/tech_note/Crop_Irrigation/CLM50_Tech_Note_Crop_Irri…
yanyanchengHydro May 9, 2020
5d2106f
Update doc/source/tech_note/Crop_Irrigation/CLM50_Tech_Note_Crop_Irri…
yanyanchengHydro May 9, 2020
26293d1
Update doc/source/tech_note/Crop_Irrigation/CLM50_Tech_Note_Crop_Irri…
yanyanchengHydro May 9, 2020
ed0489c
Update doc/source/tech_note/Crop_Irrigation/CLM50_Tech_Note_Crop_Irri…
yanyanchengHydro May 9, 2020
d30cb5d
Update doc/source/tech_note/Introduction/CLM50_Tech_Note_Introduction…
yanyanchengHydro May 9, 2020
7c315ad
modify Vegetation_Phenology_Turnover
yanyanchengHydro May 9, 2020
f5f81e0
Merge branch 'bioenergy_ctsm1.0.dev080' of github.com:yanyanchengHydr…
yanyanchengHydro May 9, 2020
1df2dd5
update tech note
yanyanchengHydro May 10, 2020
6100ac1
update tech note
yanyanchengHydro May 11, 2020
99f1b6e
update tech note
yanyanchengHydro May 14, 2020
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,15 @@ favorable growth environments (Allen et al., 2005; Vanninen and Makela,
+----------------------------------+-----------------------+-----------------------+-----------------------+-----------------------+---------------------------+-------------------------+-------------------------+-------------------------+
| Soybean I | 2 | 0 | 0 | 1 | 25 | 42 | 50 | 500 |
+----------------------------------+-----------------------+-----------------------+-----------------------+-----------------------+---------------------------+-------------------------+-------------------------+-------------------------+

| Miscanthus R | 2 | 0 | 0 | 1 | 25 | 42 | 50 | 500 |
+----------------------------------+-----------------------+-----------------------+-----------------------+-----------------------+---------------------------+-------------------------+-------------------------+-------------------------+
| Miscanthus I | 2 | 0 | 0 | 1 | 25 | 42 | 50 | 500 |
+----------------------------------+-----------------------+-----------------------+-----------------------+-----------------------+---------------------------+-------------------------+-------------------------+-------------------------+
| Switchgrass R | 2 | 0 | 0 | 1 | 25 | 42 | 50 | 500 |
+----------------------------------+-----------------------+-----------------------+-----------------------+-----------------------+---------------------------+-------------------------+-------------------------+-------------------------+
| Switchgrass I | 2 | 0 | 0 | 1 | 25 | 42 | 50 | 500 |
+----------------------------------+-----------------------+-----------------------+-----------------------+-----------------------+---------------------------+-------------------------+-------------------------+-------------------------+

Carbon to nitrogen ratios are defined for different tissue types as
follows:

Expand Down
5 changes: 4 additions & 1 deletion doc/source/tech_note/CN_Pools/CLM50_Tech_Note_CN_Pools.rst
Original file line number Diff line number Diff line change
Expand Up @@ -116,5 +116,8 @@ stoichiometry are described in Chapter :numref:`rst_CN Allocation`.
+----------------------------------+-------------------+
| Tropical Soybean | 20.00 |
+----------------------------------+-------------------+

| Miscanthus | 25.00 |
+----------------------------------+-------------------+
| Switchgrass | 25.00 |
+----------------------------------+-------------------+

252 changes: 187 additions & 65 deletions doc/source/tech_note/Crop_Irrigation/CLM50_Tech_Note_Crop_Irrigation.rst

Large diffs are not rendered by default.

10 changes: 9 additions & 1 deletion doc/source/tech_note/Fluxes/CLM50_Tech_Note_Fluxes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1351,7 +1351,15 @@ plus stem area for which :math:`z_{0m}` reaches its maximum.
+----------------------------------+--------------------+------------------+-------------------------+
| Soybean I | 0.120 | 0.68 | 0.04 |
+----------------------------------+--------------------+------------------+-------------------------+

| Miscanthus R | 0.120 | 0.68 | 0.04 |
+----------------------------------+--------------------+------------------+-------------------------+
| Miscanthus I | 0.120 | 0.68 | 0.04 |
+----------------------------------+--------------------+------------------+-------------------------+
| Switchgrass R | 0.120 | 0.68 | 0.04 |
+----------------------------------+--------------------+------------------+-------------------------+
| Switchgrass I | 0.120 | 0.68 | 0.04 |
+----------------------------------+--------------------+------------------+-------------------------+

.. _Numerical Implementation:

Numerical Implementation
Expand Down
16 changes: 11 additions & 5 deletions doc/source/tech_note/Introduction/CLM50_Tech_Note_Introduction.rst
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@

***Contributing Authors***

**Ashehad Ali, Andrew Badger, Gautam Bisht, Patrick Broxton, Michael Brunke, Jonathan Buzan, Martyn Clark, Tony Craig, Kyla Dahlin, Beth Drewniak, Louisa Emmons, Josh Fisher, Mark Flanner, Pierre Gentine, Jan Lenaerts, Sam Levis,
**Ashehad Ali, Andrew Badger, Gautam Bisht, Patrick Broxton, Michael Brunke, Jonathan Buzan, Yanyan Cheng, Martyn Clark, Tony Craig, Kyla Dahlin, Beth Drewniak, Louisa Emmons, Josh Fisher, Mark Flanner, Pierre Gentine, Maoyi Huang, Jan Lenaerts, Sam Levis,
L. Ruby Leung, William Lipscomb, Jon Pelletier, Daniel M. Ricciuto, Ben Sanderson, Jacquelyn Shuman, Andrew Slater, Zachary Subin, Jinyun Tang, Ahmed Tawfik, Quinn Thomas, Simone Tilmes, Francis Vitt, Xubin Zeng**


Expand Down Expand Up @@ -524,11 +524,17 @@ light capture, carboxylation, and respiration are co-limiting.

CLM5 applies a fixed allocation scheme for woody vegetation. The decision to use a fixed allocation scheme in CLM5, rather than a dynamic NPP-based allocation scheme, as was used in CLM4 and CLM4.5, was driven by the fact that observations indicate that biomass saturates with increasing productivity, in contrast to the behavior in CLM4 and CLM4.5 where biomass continuously increases with increasing productivity (:ref:`Negron-Juarez et al., 2015<NegronJuarezetal2015>`). Soil carbon decomposition processes are unchanged in CLM5, but a new metric for apparent soil carbon turnover times (:ref:`Koven et al., 2017 <Kovenetal2017>`) suggested parameter changes that produce a weak intrinsic depth limitation on soil carbon turnover rates (rather than the strong depth limitaiton in CLM4.5) and that the thresholds for soil moisture limitation on soil carbon turnover rates in dry soils should be set at a wetter soil moisture level than that used in CLM4.5.

Representation of human management of the land (agriculture, wood harvest) is augmented in several ways. The CLM4.5 crop model is extended to operate globally through the addition of rice and sugarcane as well as tropical varieties of corn and soybean :ref:`(Badger and Dirmeyer, 2015<BadgerandDirmeyer2015>` and :ref:`Levis et al., 2016)<Levisetal2016>`. These crop types are added to the existing temperate corn, temperature soybean, spring wheat, and cotton crop types.
Fertilization rates and irrigation equipped area updated annually based on crop type and geographic region through an input dataset. The irrigation trigger is updated. Additional minor changes include crop phenological triggers that
Representation of human management of the land (agriculture, wood harvest) is augmented in several ways.
The CLM4.5 crop model is extended to operate globally through the addition of rice, sugarcane,
tropical varieties of corn and soybean :ref:`(Badger and Dirmeyer, 2015<BadgerandDirmeyer2015>` and :ref:`Levis et al., 2016)<Levisetal2016>`,
and perennial bioenergy crops :ref:`(Cheng et al., 2019)<Chengetal2019>`.
These crop types are added to the existing temperate corn, temperature soybean, spring wheat, and cotton crop types.
yanyanchengHydro marked this conversation as resolved.
Show resolved Hide resolved
Fertilization rates and irrigation equipped area updated annually based on crop type and geographic region through an input dataset.
The irrigation trigger is updated. Additional minor changes include crop phenological triggers that
vary by latitude for selected crop types, grain C and N is now removed at harvest to a 1-year product pool with
the carbon for the next season's crop seed removed from the grain carbon at harvest. Through the introduction of
the capability to dynamically adjust landunit weights during a simulation, the crop model can now be run coincidentally
the carbon for the next season's crop seed removed from the grain carbon at harvest.
A fraction of leaf/livestem C and N from bioenergy crops is removed at harvest to the biofuel feedstock pools and added to the 1-year product pool.
Through the introduction of the capability to dynamically adjust landunit weights during a simulation, the crop model can now be run coincidentally
with prescribed land use, which significantly expands the capabilities of the model. Mass-based rather than area-based wood harvest is applied. Several heat stress indices for both urban and rural areas are calculated and output by default :ref:`(Buzan et al., 2015)<Buzanetal2015>`. A more sophisticated and realistic building space heating and air conditioning submodel that prognoses interior building air temperature and includes more realistic space heating and air conditioning wasteheat factors
is incorporated.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,11 @@ atmospheric potential temperature (K).
+----------------------------------+-------------------+
| Tropical Soybean | 5.79 |
+----------------------------------+-------------------+

| Miscanthus | 1.79 |
+----------------------------------+-------------------+
| Switchgrass | 1.79 |
+----------------------------------+-------------------+

.. _Photosynthesis:

Photosynthesis
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,10 @@ and :math:`\text{LMA}` is the inverse of specific leaf area at the canopy top (:
+----------------------------------+--------------------------+--------------------------+
| Tropical Soybean | 0.0350 | 0.4102 |
+----------------------------------+--------------------------+--------------------------+
| Miscanthus | 0.0570 | 0.2930 |
+----------------------------------+--------------------------+--------------------------+
| Switchgrass | 0.0490 | 0.2930 |
+----------------------------------+--------------------------+--------------------------+

Notes: :math:`SLA_{\text{0}}` is the specific leaf area at the canopy top (m :sup:`2` leaf/g biomass),
and :math:`N_{\text{cb}}` is the fraction of leaf nitrogen in Rubisco (g N in Rubisco g :sup:`-1` N)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,14 @@ distribution parameter adopted from :ref:`Jackson et al. (1996)<Jacksonetal1996>
+----------------------------------+------------------+
| Soybean I | 0.943 |
+----------------------------------+------------------+
| Miscanthus R | 0.943 |
+----------------------------------+------------------+
| Miscanthus I | 0.943 |
+----------------------------------+------------------+
| Switchgrass R | 0.943 |
+----------------------------------+------------------+
| Switchgrass I | 0.943 |
+----------------------------------+------------------+

.. _Root Spacing:

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -274,6 +274,14 @@ Cao, M., Marshall, S. and Gregson, K., 1996. Global carbon exchange and
methane emissions from natural wetlands: Application of a process-based
model. J. Geophys. Res. 101(D9):14,399-14,414.

.. _Chengetal2019:

Cheng, Y. et al., 2019. Parameterizing perennial bioenergy
crops in Version 5 of the Community Land Model Based on Site‐Level
Observations in the Central Midwestern United States.
Journal of Advances in Modeling Earth Systems,
2(2013), 1–24. https://doi.org/10.1029/2019MS001719

.. _Chuangetal2006:

Chuang Y.L., Oren R., Bertozzi A.L, Phillips N., Katul G.G. 2006. The
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -485,6 +485,10 @@ intercepted snow (:numref:`Table Intercepted snow optical properties`) are from
+----------------------------------+----------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+
| Tropical Soybean | -0.50 | 0.11 | 0.35 | 0.31 | 0.53 | 0.05 | 0.34 | 0.120 | 0.250 |
+----------------------------------+----------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+
| Miscanthus | -0.50 | 0.11 | 0.35 | 0.31 | 0.53 | 0.05 | 0.34 | 0.120 | 0.250 |
+----------------------------------+----------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+
| Switchgrass | -0.50 | 0.11 | 0.35 | 0.31 | 0.53 | 0.05 | 0.34 | 0.120 | 0.250 |
+----------------------------------+----------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+

.. _Table Intercepted snow optical properties:

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -132,12 +132,16 @@ periods as:
.. math::
:label: 20.14)

CF_{leaf,litter}^{n} =\left\{\begin{array}{l} {CF_{leaf,litter}^{n-1} +r_{xfer\_ off} \left(CS_{leaf} -CF_{leaf,litter}^{n-1} {\kern 1pt} t_{offset} \right)\qquad {\rm for\; }t_{offset} \ne \Delta t} \\ {\left({CS_{leaf} \mathord{\left/ {\vphantom {CS_{leaf} \Delta t}} \right. \kern-\nulldelimiterspace} \Delta t} \right)+CF_{alloc,leaf} \qquad \qquad \qquad \qquad {\rm for\; }t_{offset} =\Delta t} \end{array}\right.
CF_{leaf,litter}^{n} =\left\{\begin{array}{l} {CF_{leaf,litter}^{n-1} + r_{xfer\_ off} \left(CS_{leaf} -CF_{leaf,litter}^{n-1} {\kern 1pt} t_{offset} \right)\qquad {\rm for\; }t_{offset} \ne \Delta t}
\\ {\left({CS_{leaf} \mathord{\left/ {\vphantom {CS_{leaf} \Delta t}} \right. \kern-\nulldelimiterspace} \Delta t} \right)
\left( 1-biofuel\_harvfrac \right)
+CF_{alloc,leaf} \qquad {\rm for\; }t_{offset} =\Delta t} \end{array}\right.

.. math::
:label: 20.15)

CF_{froot,litter}^{n} =\left\{\begin{array}{l} {CF_{froot,litter}^{n-1} +r_{xfer\_ off} \left(CS_{froot} -CF_{froot,litter}^{n-1} {\kern 1pt} t_{offset} \right)\qquad {\rm for\; }t_{offset} \ne \Delta t} \\ {\left({CS_{froot} \mathord{\left/ {\vphantom {CS_{froot} \Delta t}} \right. \kern-\nulldelimiterspace} \Delta t} \right)+CF_{alloc,\, froot} \qquad \qquad \qquad {\rm for\; }t_{offset} =\Delta t} \end{array}\right.
CF_{froot,litter}^{n} =\left\{\begin{array}{l} {CF_{froot,litter}^{n-1} +
r_{xfer\_ off} \left(CS_{froot} -CF_{froot,litter}^{n-1} {\kern 1pt} t_{offset} \right)\qquad {\rm for\; }t_{offset} \ne \Delta t} \\ {\left({CS_{froot} \mathord{\left/ {\vphantom {CS_{froot} \Delta t}} \right. \kern-\nulldelimiterspace} \Delta t} \right)+CF_{alloc,\, froot} \qquad \qquad \qquad {\rm for\; }t_{offset} =\Delta t} \end{array}\right.

.. math::
:label: 20.16)
Expand All @@ -146,10 +150,13 @@ periods as:

where superscripts *n* and *n-1* refer to fluxes on the current and
previous timesteps, respectively. The rate coefficient :math:`{r}_{xfer\_off}` varies with time to produce a linearly
increasing litterfall rate throughout the offset period, and the special
case for fluxes in the final litterfall timestep
(:math:`{t}_{offset}` = :math:`\Delta t`\ ) ensures that all of the
displayed growth is sent to the litter pools for deciduous plant types.
increasing litterfall rate throughout the offset period.
The :math:`biofuel\_harvfrac` (:numref:`Table Plant functional type (PFT) parameters for harvested fraction of leaf/livestem for bioenergy crops`)
danicalombardozzi marked this conversation as resolved.
Show resolved Hide resolved
is the harvested fraction of aboveground biomass (leaf & livestem) for bioenergy crops. It is only non-zero for prognostic crops.
danicalombardozzi marked this conversation as resolved.
Show resolved Hide resolved
The special case for fluxes in the final litterfall timestep
(:math:`{t}_{offset}` = :math:`\Delta t`\ ) ensures that all of the displayed growth is sent to the litter pools or biofuel feedstock pools. The fraction (:math:`biofuel\_harvfrac`) of leaf biomass going to the biofuel feedstock pools (Equation :eq:`25.9`) is defined in Table 26.3 and is only non-zero for prognostic crops. The remaining fraction of leaf biomass (:math:`1-biofuel\_harvfrac`) for deciduous plant types is sent to the litter pools.
Similar modifications made for livestem carbon pools for prognostic crops
can be found in section :numref:`Harvest to food and seed` in Equations :eq:`25.9`-:eq:`25.14`.

Corresponding nitrogen fluxes during litterfall take into account retranslocation of nitrogen out of the displayed leaf pool prior to
litterfall (:math:`{NF}_{leaf,retrans}`, gN m\ :sup:`-2` s\ :sup:`-1`). Retranslocation of nitrogen out of fine roots is
Expand Down Expand Up @@ -865,4 +872,3 @@ fractions used for carbon fluxes:
:label: 20.97)

NF_{froot,lit3} =\sum _{p=0}^{npfts}NF_{froot,litter} f_{lig\_ froot,p} wcol_{p} .

Loading