Skip to content

Commit

Permalink
Initial
Browse files Browse the repository at this point in the history
  • Loading branch information
Eric-mingjie committed Oct 11, 2018
0 parents commit 92e4108
Show file tree
Hide file tree
Showing 89 changed files with 13,943 additions and 0 deletions.
21 changes: 21 additions & 0 deletions LICENSE
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2018 Mingjie Sun

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
5 changes: 5 additions & 0 deletions README.md
@@ -0,0 +1,5 @@
# Rethinking the Value of Network Pruning (Pytorch)
This repository contains a pytorch implementation of the paper Rethinking the Value of Network Pruning.

## Contact
sunmj15 at gmail.com liuzhuangthu at gmail.com
7 changes: 7 additions & 0 deletions cifar/README.md
@@ -0,0 +1,7 @@
# CIFAR Experiments
This directory contains all the CIFAR experiments in the paper, where there are three pruning methods in total:
1. L1-norm based channel pruning
2. Network Slimming
3. Non-structured weight level pruning

For each method, we give example commands for baseline training, finetuning, scratch-E training and scratch-B training.
48 changes: 48 additions & 0 deletions cifar/l1-norm-pruning/README.md
@@ -0,0 +1,48 @@
# Pruning Filters For Efficient ConvNets

This directory contains a pytorch re-implementation of all CIFAR experiments of the following paper
[Pruning Filters for Efficient ConvNets](https://arxiv.org/abs/1608.08710) (ICLR 2017).

## Dependencies
torch v0.3.1, torchvision v0.2.0

## Baseline

The `dataset` argument specifies which dataset to use: `cifar10` or `cifar100`. The `arch` argument specifies the architecture to use: `vgg` or `resnet`. The depth is chosen to be the same as the networks used in the paper.
```shell
python main.py --dataset cifar10 --arch vgg --depth 16
python main.py --dataset cifar10 --arch resnet --depth 56
python main.py --dataset cifar10 --arch resnet --depth 110
```

## Prune

```shell
python vggprune.py --dataset cifar10 --model [PATH TO THE MODEL] --save [DIRECTORY TO STORE RESULT]
python res56prune.py --dataset cifar10 -v A --model [PATH TO THE MODEL] --save [DIRECTORY TO STORE RESULT]
python res110prune.py --dataset cifar10 -v A --model [PATH TO THE MODEL] --save [DIRECTORY TO STORE RESULT]
```
Here in `res56prune.py` and `res110prune.py`, the `-v` argument is `A` or `B`, which refers to the naming of the pruned model in the original paper. The pruned model will be named `pruned.pth.tar`.

## Fine-tune

```shell
python main_finetune.py --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch vgg --depth 16
python main_finetune.py --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch resnet --depth 56
python main_finetune.py --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch resnet --depth 110
```

## Scratch-E
```
python main_E.py --scratch [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch vgg --depth 16
python main_E.py --scratch [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch resnet --depth 56
python main_E.py --scratch [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch resnet --depth 110
```

## Scratch-B
```
python main_B.py --scratch [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch vgg --depth 16
python main_B.py --scratch [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch resnet --depth 56
python main_B.py --scratch [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch resnet --depth 110
```

112 changes: 112 additions & 0 deletions cifar/l1-norm-pruning/compute_flops.py
@@ -0,0 +1,112 @@
import numpy as np

import torch
import torchvision
import torch.nn as nn
from torch.autograd import Variable


def print_model_param_nums(model=None, multiply_adds=True):
if model == None:
model = torchvision.models.alexnet()
total = sum([param.nelement() for param in model.parameters()])
print(' + Number of params: %.2fM' % (total / 1e6))

def print_model_param_flops(model=None, input_res=224, multiply_adds=True):

prods = {}
def save_hook(name):
def hook_per(self, input, output):
prods[name] = np.prod(input[0].shape)
return hook_per

list_1=[]
def simple_hook(self, input, output):
list_1.append(np.prod(input[0].shape))
list_2={}
def simple_hook2(self, input, output):
list_2['names'] = np.prod(input[0].shape)

list_conv=[]
def conv_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()

kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups)
bias_ops = 1 if self.bias is not None else 0

params = output_channels * (kernel_ops + bias_ops)
flops = (kernel_ops * (2 if multiply_adds else 1) + bias_ops) * output_channels * output_height * output_width * batch_size

list_conv.append(flops)

list_linear=[]
def linear_hook(self, input, output):
batch_size = input[0].size(0) if input[0].dim() == 2 else 1

weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
bias_ops = self.bias.nelement()

flops = batch_size * (weight_ops + bias_ops)
list_linear.append(flops)

list_bn=[]
def bn_hook(self, input, output):
list_bn.append(input[0].nelement() * 2)

list_relu=[]
def relu_hook(self, input, output):
list_relu.append(input[0].nelement())

list_pooling=[]
def pooling_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()

kernel_ops = self.kernel_size * self.kernel_size
bias_ops = 0
params = 0
flops = (kernel_ops + bias_ops) * output_channels * output_height * output_width * batch_size

list_pooling.append(flops)

list_upsample=[]
# For bilinear upsample
def upsample_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()

flops = output_height * output_width * output_channels * batch_size * 12
list_upsample.append(flops)

def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, torch.nn.Conv2d):
net.register_forward_hook(conv_hook)
if isinstance(net, torch.nn.Linear):
net.register_forward_hook(linear_hook)
if isinstance(net, torch.nn.BatchNorm2d):
net.register_forward_hook(bn_hook)
if isinstance(net, torch.nn.ReLU):
net.register_forward_hook(relu_hook)
if isinstance(net, torch.nn.MaxPool2d) or isinstance(net, torch.nn.AvgPool2d):
net.register_forward_hook(pooling_hook)
if isinstance(net, torch.nn.Upsample):
net.register_forward_hook(upsample_hook)
return
for c in childrens:
foo(c)

if model == None:
model = torchvision.models.alexnet()
foo(model)
input = Variable(torch.rand(3, 3, input_res, input_res), requires_grad = True)
out = model(input)


total_flops = (sum(list_conv) + sum(list_linear) + sum(list_bn) + sum(list_relu) + sum(list_pooling) + sum(list_upsample))

print(' + Number of FLOPs: %.5fG' % (total_flops / 3 / 1e9))

return total_flops
176 changes: 176 additions & 0 deletions cifar/l1-norm-pruning/main.py
@@ -0,0 +1,176 @@
from __future__ import print_function
import argparse
import numpy as np
import os
import shutil

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

import models


# Training settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR training')
parser.add_argument('--dataset', type=str, default='cifar100',
help='training dataset (default: cifar100)')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--epochs', type=int, default=160, metavar='N',
help='number of epochs to train (default: 160)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save', default='./logs', type=str, metavar='PATH',
help='path to save prune model (default: current directory)')
parser.add_argument('--arch', default='vgg', type=str,
help='architecture to use')
parser.add_argument('--depth', default=16, type=int,
help='depth of the neural network')

args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)

if not os.path.exists(args.save):
os.makedirs(args.save)

kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
else:
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)

model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth)

if args.cuda:
model.cuda()

optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
.format(args.resume, checkpoint['epoch'], best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))

def train(epoch):
model.train()
avg_loss = 0.
train_acc = 0.
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
avg_loss += loss.data[0]
pred = output.data.max(1, keepdim=True)[1]
train_acc += pred.eq(target.data.view_as(pred)).cpu().sum()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))

def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).data[0] # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()

test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.1f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return correct / float(len(test_loader.dataset))

def save_checkpoint(state, is_best, filepath):
torch.save(state, os.path.join(filepath, 'checkpoint.pth.tar'))
if is_best:
shutil.copyfile(os.path.join(filepath, 'checkpoint.pth.tar'), os.path.join(filepath, 'model_best.pth.tar'))

best_prec1 = 0.
for epoch in range(args.start_epoch, args.epochs):
if epoch in [args.epochs*0.5, args.epochs*0.75]:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.1
train(epoch)
prec1 = test()
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
'cfg': model.cfg
}, is_best, filepath=args.save)

0 comments on commit 92e4108

Please sign in to comment.