Skip to content

High-order numerical methods for flow simulations capture complex phenomena like vortices and separation regions using fewer degrees of freedom than their low-order counterparts. The High Fidelity (HiFi) provided by the schemes, combined with turbulence models for small scales and wall interactions, gives rise to a powerful Large Eddy Simulation…

License

Notifications You must be signed in to change notification settings

Fanxiaotsing/FR

Repository files navigation

FR

HiFiLES dev. v0.1: High Fidelity Large Eddy Simulation

At the Aerospace Computing Laboratory we believe that high-order numerical schemes have the potential to advance CFD beyond the current plateau of second-order methods and RANS turbulence modeling, ushering in new levels of accuracy and computational efficiency in turbulent flow simulations. HiFiLES (High Fidelity Large Eddy Simulation) is released as a freely available tool to unify the research community, promoting the advancement and wider adoption of high-order methods. The code is designed as an ideal base for further development on a variety of architectures.

HiFiLES is under active development in the Aerospace Computing Lab in the Department of Aeronautics and Astronautics at Stanford University and has been released under an open-source license (GNU General Public License v3.0).

HiFiLES Introduction

High-order numerical methods for flow simulations capture complex phenomena like vortices and separation regions using fewer degrees of freedom than their low-order counterparts. The High Fidelity (HiFi) provided by the schemes, combined with turbulence models for small scales and wall interactions, gives rise to a powerful Large Eddy Simulation (LES) software package. HiFiLES is an open-source, high-order, compressible flow solver for unstructured grids built from the ground up to take full advantage of parallel computing architectures. It is specially well-suited for Graphical Processing Unit (GPU) architectures. HiFiLES is written in C++. The code uses the MPI protocol to run on multiple processors, and CUDA to harness GPU performance.

HiFiLES Dev. Ver. 0.1 contains the following capabilities:

  • High-order compressible Navier-Stokes and Euler equations solver in 2D and 3D with support for triangular, quadratic, hexahedral, prismatic, and tetrahedral elements. Implementation for spatial orders of accuracy 2 through 4 have been verified.
  • Numerical scheme: Energy-Stable Flux Reconstruction.
  • Time advancement: explicit time-stepping with low-storage RK45 method (4th order) or forward Euler (1st order). Local time-stepping when running on CPUs.
  • Boundary conditions: Wall: no-slip isothermal, no-slip adiabatic, and symmetry (slip wall). Inflow and outflow: characteristic, supersonic, subsonic. Periodic.
  • High-order surface representation.
  • Mesh format compatibility: neutral (.neu) and Gmsh (.msh).
  • Large Eddy Simulation: Sub-grid Scale Models: Smagorinsky, WALE, similarity, and combinations of these. Wall models: log-law, three-layer Breuer-Rodi.
  • Parallelization: MPI, and GPU (strong scalability 88% of ideal for up to 16 GPUs; weak scalability above 90% of ideal for up to 16 GPUs)

About

High-order numerical methods for flow simulations capture complex phenomena like vortices and separation regions using fewer degrees of freedom than their low-order counterparts. The High Fidelity (HiFi) provided by the schemes, combined with turbulence models for small scales and wall interactions, gives rise to a powerful Large Eddy Simulation…

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages