Skip to content

Commit

Permalink
update the documentation of the model file settings and SLHA input
Browse files Browse the repository at this point in the history
  • Loading branch information
Alexander Voigt authored and Alexander Voigt committed Jul 27, 2016
1 parent 9c83cdb commit d0f5539
Show file tree
Hide file tree
Showing 2 changed files with 156 additions and 11 deletions.
123 changes: 113 additions & 10 deletions doc/model_file.dox
Expand Up @@ -245,16 +245,16 @@ RealParameters = { B[\[Mu]] };

\section boundary_conditions Boundary conditions

In FlexibleSUSY, spectrum generators with two or three boundary
conditions can be generated. (Future versions will support more than
three boundary conditions.) By default, a spectrum generator with
three boundary conditions is generated. These boundary conditions are
named "high-scale", "susy-scale" and "low-scale" boundary condition
and are described in the following. In order to generate a spectrum
generator with only two boundary conditions, set
In FlexibleSUSY, spectrum generators with maximum 3 boundary
conditions can be generated. These boundary conditions are named
"high-scale", "susy-scale" and "low-scale" boundary condition and are
described in the following.

However, it is possible to disable the high-scale boundary condition.
In order to do so, set

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.m}
OnlyLowEnergyFlexibleSUSY = True; (* only 2 BCs, default: False *)
OnlyLowEnergyFlexibleSUSY = True; (* disable high-scale BC, default: False *)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_____________________________________________________________________
Expand All @@ -268,6 +268,8 @@ __Description__:
The scale of the low-scale boundary condition, at which the model is
matched to the Standard Model.

\note `LowScale` is ignored if `FlexibleEFTHiggs == True`

Example: In the CMSSM the low-energy scale should be set to the Z or
top pole mass. This choice is achieved by the following expression:

Expand All @@ -285,6 +287,8 @@ __Description__:

First guess of the low-energy scale.

\note `LowScaleFirstGuess` is ignored if `FlexibleEFTHiggs == True`

Example: In the CMSSM the first guess for the low-energy scale should
be set to the Z or top pole mass:

Expand All @@ -308,6 +312,8 @@ At the low-energy scale, FlexibleSUSY automatically determines the
three gauge couplings from the SLHA input parameters
\f$\alpha_{em}\f$, \f$M_Z\f$ and \f$G_F\f$ or \f$M_W\f$.

\note `LowScaleInput` is ignored if `FlexibleEFTHiggs == True`

_TODO_: Add note about how the the user can chose between \f$G_F\f$ or
\f$M_W\f$ as input.

Expand Down Expand Up @@ -495,9 +501,11 @@ __Default value__: `{}`
__Description__:

With the `InitialGuessAtLowScale` variable initial values for the
model MS-bar parameters can be given at the low-energy scale
model MS-bar/DR-bar parameters can be given at the low-energy scale
`LowScale`.

\note `InitialGuessAtLowScale` is ignored if `FlexibleEFTHiggs == True`

Example: In the CMSSM `InitialGuessAtLowScale` is given as follows:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Expand All @@ -512,14 +520,52 @@ InitialGuessAtLowScale = {

_____________________________________________________________________

__Symbol__: `InitialGuessAtSUSYScale`

__Default value__: `{}`

__Description__:

\note `InitialGuessAtSUSYScale` is only used if `FlexibleEFTHiggs == True`

With the `InitialGuessAtSUSYScale` variable initial values for the
model MS-bar/DR-bar parameters can be given at the SUSY scale
`SUSYScale`.

Example: In the MSSMtower `InitialGuessAtSUSYScale` is given as follows:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
InitialGuessAtSUSYScale = {
{Yu, Automatic},
{Yd, Automatic},
{Ye, Automatic}
{MassB, Ms},
{MassWB, Ms},
{MassG, Ms},
{mq2, UNITMATRIX[3] Ms^2},
{mu2, UNITMATRIX[3] Ms^2},
{md2, UNITMATRIX[3] Ms^2},
{ml2, UNITMATRIX[3] Ms^2},
{me2, UNITMATRIX[3] Ms^2},
{\[Mu], Ms},
{B[\[Mu]], Sqr[Ms]/(TanBeta + 1/TanBeta)},
{T[Yu], Ms/TanBeta Yu},
{T[Yd], Ms TanBeta Yd},
{T[Ye], Ms TanBeta Ye},
{T[Yu][3,3], (Ms/TanBeta + Xtt Ms) Yu[3,3]}
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_____________________________________________________________________

__Symbol__: `InitialGuessAtHighScale`

__Default value__: `{}`

__Description__:

With the `InitialGuessAtHighScale` variable initial values for the
model MS-bar parameters can be given at the high-energy scale
model MS-bar/DR-bar parameters can be given at the high-energy scale
`HighScale`.

Example: In the CMSSM `InitialGuessAtHighScale` is given as follows:
Expand Down Expand Up @@ -583,6 +629,63 @@ output parameters are chosen automatically as follows:
`EWSBOutputParameters` are fixed by the tree-level EWSB equation
temporarily when the running (tree-level) masses are calculated.

_____________________________________________________________________

__Symbol__: `SUSYScaleMatching`

__Default value__: `{}`

__Description__:

\note `SUSYScaleMatching` is only used if `FlexibleEFTHiggs == True`

In the `SUSYScaleMatching` variable, relations between the parameters
of the full model and the Standard Model (the EFT) at the `SUSYScale`
can be specified.

An important application is the relation between the vacuum
expectation values (VEVs) in a SUSY model and \f$v\f$ in the Standard
Model: In `FlexibleEFTHiggs` the running Yukawa couplings of the full
model are determined from a pole mass matching of the Standard Model
fermions (which need to be present in both models). For this
determination the running VEVs of the full model must be known and
non-zero. `SUSYScaleMatching` allows the user for example to fix the
running VEVs of the full model as a function of the running SM-like
VEV \f$v\f$ in the full model.

_Example:_ In the MSSM the vacuum expectation values \f$v_u\f$ and
\f$v_d\f$ are related to the MSSM SM-like VEV \f$v = \sqrt{v_u^2 +
v_d^2}\f$ as
\f{align*}{
v_u &= v \sin\beta , \\
v_d &= v \cos\beta .
\f}

To fix \f$v_u\f$ and \f$v_d\f$ in the MSSM in this way,
`SUSYScaleMatching` can be used:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.m}
SUSYScaleMatching = {
{vu, VEV Sin[ArcTan[TanBeta]]},
{vd, VEV Cos[ArcTan[TanBeta]]}
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where `TanBeta` is an input parameter. The symbol `VEV` is a
FlexibleSUSY constant which is assigned the value
\f{align*}{
\text{VEV} = \frac{2 m_Z}{\sqrt{g_Y^2 + g_2^2}} ,
\f}
where \f$m_Z\f$ is the running Z boson mass in the full model,
detetermined by requiring the equality of the Z boson pole masses of
the full model and the Standard Model. \f$g_Y\f$ and \f$g_2\f$ are
the running gauge couplings of \f$U(1)_Y\f$ and \f$SU(2)_L\f$ in the
full model, respectively. These two gauge couplings are calculated
using the 1-loop threshold correction for \f$\alpha_{\text{em}}\f$ and
the running weak mixing angle, \f$\cos\theta_W = m_W / m_Z\f$.
\f$m_W\f$ is the running W boson mass in the full model, detetermined
by requiring the equality of the W boson pole masses of the full model
and the Standard Model.

\subsection input_format Boundary condition format

Expand Down
44 changes: 43 additions & 1 deletion doc/slha_input.dox
Expand Up @@ -28,6 +28,9 @@ Block FlexibleSUSY
15 0 # calculate observables (a_muon, effective couplings)
16 0 # force positive majorana masses
17 0 # pole mass scale
18 0 # pole mass scale in the EFT (0 = min(SUSY scale, Mt))
19 0 # EFT matching scale (0 = SUSY scale)
20 1 # EFT matching loop order
~~~~~~~~~~~~~~~~~~~~~~~

__Description__:
Expand Down Expand Up @@ -57,6 +60,9 @@ index | description | possible values | de
15 | calculate observables | 0 (no) or 1 (yes) | 0 (= no)
16 | force positive Majorana masses | 0 (no) or 1 (yes) | 0 (= no)
17 | pole mass scale | any positive double | 0 (= SUSY scale)
18 | EFT pole mass scale | any positive double | 0 (= minimum of {Mt, SUSY scale})
19 | EFT matching scale | any positive double | 0 (= SUSY scale)
20 | EFT matching loop order | 0, 1 | 1 (= 1-loop)

### Precision goal ###

Expand Down Expand Up @@ -249,7 +255,7 @@ scale \f$Q_{\text{low}}\f$ in the \f$\overline{\text{MS}}\f$ or
^4\right\}}{9953280 \pi^6}
\f}

## Pole mass scale ##
### Pole mass scale ###

Using `FlexibleSUSY[17]`, the renormalization scale at which the pole
mass spectrum is calculated can be overwritten. By default the
Expand All @@ -258,6 +264,42 @@ model file). If `FlexibleSUSY[17]` is set to `0`, the value given by
the `SUSYScale` variable is used. If `FlexibleSUSY[17]` is set to a
non-zero value, then this value is used as renormalization scale.

### EFT pole mass scale ###

\note Only used if `FlexibleEFTHiggs == True`

Using `FlexibleSUSY[18]`, the renormalization scale at which the
Standard Model pole mass spectrum is calculated in the EFT can be
overwritten. If unspecified or set to `0`, the minimum of the top
pole mass and the `SUSYScale` is used.

### EFT matching scale ###

\note Only used if `FlexibleEFTHiggs == True`

Using `FlexibleSUSY[19]`, the renormalization scale at which the full
model is matched to the Standard Model can be overwritten. If
unspecified or set to `0`, the `SUSYScale` is used.

### EFT matching loop order ###

\note Only used if `FlexibleEFTHiggs == True`

Using `FlexibleSUSY[20]`, the loop order for the matching of the full
model to the Standard Model can be selected. If unspecified, the loop
order is set to `1`.

\note When `FlexibleSUSY[20] = 1` and `FlexibleSUSY[13] = 1`, then
2-loop top Yukawa coupling threshold corrections are additonally taken
into account in the determination of running top Yukawa coupling of
the full model at the matching scale, \f$y_t^{\text{model}}\f$. These
2-loop corrections arise when top pole masses of the Standard Model
and the full model are set equal to determine
\f$y_t^{\text{model}}\f$. These 2-loop corrections must be included
in order to reproduce the results of the pure EFT approaches
(FlexibleSUSY/HSSUSY or SUSYHD) with FlexibleEFTHiggs.


\section FlexibleSUSY_input Additional physical input parameters (FlexibleSUSYInput)

__Block name__: `FlexibleSUSYInput`
Expand Down

0 comments on commit d0f5539

Please sign in to comment.