Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

GAN models #47

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
141 changes: 141 additions & 0 deletions vision/mnist/dcgan.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
using Flux, Flux.Data.MNIST
using Flux: @epochs, back!, testmode!, throttle
using Base.Iterators: partition
using Distributions: Uniform
using CUDAnative: tanh, log, exp
using CuArrays

# Encode MNIST images as compressed vectors that can later be decoded back into
# images.
BATCH_SIZE = 128

imgs = MNIST.images()

# Partition into batches of size 128
data = [float(hcat(vec.(imgs)...)) for imgs in partition(imgs, BATCH_SIZE)]
#data = gpu.(data)

NUM_EPOCHS = 5
noise_dim = 96
channels = 128
hidden_dim = 7 * 7 * channels

dist = Uniform(-1, 1)

training_steps = 0
verbose_freq = 100
############################### DCGAN Architecture #############################
################################## Generator ###################################

fc_gen = Chain(Dense(noise_dim, 1024, relu), BatchNorm(1024),
Dense(1024, hidden_dim, relu), BatchNorm(hidden_dim))
deconv_ = Chain(ConvTranspose((4,4), channels=>64, relu; stride=(2,2), pad=(1,1)), BatchNorm(64),
ConvTranspose((4,4), 64=>1, tanh; stride=(2,2), pad=(1,1)))

generator = Chain(fc_gen..., x->reshape(x, 7, 7, channels, :), deconv_...,
x->reshape(x, 784, :)) |> gpu

################################## Discriminator ###############################

fc_disc = Chain(Dense(1024, 1024, leakyrelu), Dense(1024, 1))
conv_ = Chain(Conv((5,5), 1=>32, leakyrelu), x->maxpool(x, (2,2)),
Conv((5,5), 32=>64, leakyrelu), x->maxpool(x, (2,2)))

discriminator = Chain(x->reshape(x, 28, 28, 1, :),
conv_..., x->reshape(x, 1024, :), fc_disc...) |> gpu

################################################################################

opt_gen = ADAM(params(generator), 0.001f0, β1 = 0.5)
opt_disc = ADAM(params(discriminator), 0.001f0, β1 = 0.5)

############################### Helper Functions ###############################
function nullify_grad!(p)
if typeof(p) <: TrackedArray
p.grad .= 0.0f0
end
return p
end

function zero_grad!(model)
model = mapleaves(nullify_grad!, model)
end

######################### Creating and saving the Images #######################

using Images

img(x) = Gray.(reshape((x+1)/2, 28, 28))

function sample()
# 36 random digits
noise = [rand(dist, noise_dim, 1) for i=1:36]
noise = gpu.(noise)

# Generating images
testmode!(generator)
fake_imgs = img.(map(x -> cpu(generator(x).data), noise))
testmode!(generator, false)

# Stack them all together
img_grid = vcat([hcat(imgs...) for imgs in partition(fake_imgs, 6)]...)
end

cd(@__DIR__)

################################ Loss and Training ##############################
# binary cross entropy
function bce(ŷ, y)
neg_abs = -abs.(ŷ)
mean(relu.(ŷ) .- ŷ .* y .+ log.(1 + exp.(neg_abs)))
end

function train(x)
global training_steps

z = rand(dist, noise_dim, BATCH_SIZE) |> gpu
inp = 2x - 1 |> gpu

zero_grad!(discriminator)

D_real = discriminator(inp)
D_real_loss = bce(D_real, ones(D_real.data))

fake_x = generator(z)
D_fake = discriminator(fake_x)
D_fake_loss = bce(D_fake, zeros(D_fake.data))

D_loss = D_real_loss + D_fake_loss

Flux.back!(D_loss)
opt_disc()

zero_grad!(generator)

z = rand(dist, noise_dim, BATCH_SIZE) |> gpu
fake_x = generator(z)
D_fake = discriminator(fake_x)
G_loss = bce(D_fake, ones(D_fake.data))

Flux.back!(G_loss)
opt_gen()

if training_steps % verbose_freq == 0
println("D Loss: $(D_loss.data) | G loss: $(G_loss.data)")
end

training_steps += 1
param(0.0f0)
end

#evalcb = throttle(() -> (save("sample_dcgan.png", sample()); println("Sample saved")), 100)
#@epochs 4 Flux.train!(train, zip(data), SGD(params(discriminator), 0.0f0), cb=evalcb)

for e = 1:NUM_EPOCHS
for imgs in data
train(imgs)
end
println("Epoch $e over.")
end

save("sample_dcgan.png", sample())
116 changes: 116 additions & 0 deletions vision/mnist/lsgan.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
using Flux, Flux.Data.MNIST
using Flux: @epochs, back!, testmode!
using Base.Iterators: partition
using Distributions: Uniform
using CuArrays

# Encode MNIST images as compressed vectors that can later be decoded back into
# images.
BATCH_SIZE = 128

imgs = MNIST.images()

# Partition into batches of size 128
data = [float(hcat(vec.(imgs)...)) for imgs in partition(imgs, BATCH_SIZE)]
#data = gpu.(data)

NUM_EPOCHS = 50
noise_dim = 96
training_steps = 0
VERBOSE_FREQ = 100
dist = Uniform(-1, 1)

############################### WGAN Architecture ##############################
################################## Generator ###################################

generator = Chain(Dense(noise_dim, 1024, relu), Dense(1024, 1024, relu), Dense(1024, 784, tanh)) |> gpu

################################## Discriminator ###############################

discriminator = Chain(Dense(784, 256, leakyrelu), Dense(256, 256, leakyrelu), Dense(256, 1)) |> gpu

################################################################################

opt_gen = ADAM(params(generator), 0.001f0, β1 = 0.5)
opt_disc = ADAM(params(discriminator), 0.001f0, β1 = 0.5)

############################### Helper Functions ###############################

function nullify_grad!(p)
if typeof(p) <: TrackedArray
p.grad .= 0.0f0
end
return p
end

function zero_grad!(model)
model = mapleaves(nullify_grad!, model)
end

############################# Generating Sample Images #########################
using Images

img(x) = Gray.(reshape((x+1)/2, 28, 28))

function sample()
# 36 random digits
noise = [rand(dist, noise_dim, 1) |> gpu for i=1:36]

# generating images
testmode!(generator)
fake_imgs = img.(map(x -> cpu(generator(x).data), noise))
testmode!(generator, false)

# Stack them all together
vcat([hcat(imgs...) for imgs in partition(fake_imgs, 6)]...)
end

cd(@__DIR__)

################################################################################

function train(x)
global training_steps

z = rand(dist, noise_dim, BATCH_SIZE) |> gpu
inp = 2x - 1 |> gpu

zero_grad!(discriminator)

D_real = discriminator(inp)
D_real_loss = mean((D_real - 1.0f0).^2 / 2.0f0)

fake_x = generator(z)
D_fake = discriminator(fake_x)
D_fake_loss = mean(D_fake.^2 / 2.0f0)

D_loss = D_real_loss + D_fake_loss

back!(D_loss)
opt_disc()

zero_grad!(generator)
z = rand(dist, noise_dim, BATCH_SIZE) |> gpu
fake_x = generator(z)
D_fake = discriminator(fake_x)

G_loss = mean((D_fake - 1.0f0).^2 / 2.0f0)

back!(G_loss)
opt_gen()

if training_steps % VERBOSE_FREQ == 0
println("D loss: $(D_loss.data) | G loss: $(G_loss.data)")
end

#param(0.0f0)
end

for e=1:NUM_EPOCHS
for imgs in data
train(imgs)
end
println("EPOCH $e Over")
end

save("sample_lsgan.png", sample())
134 changes: 134 additions & 0 deletions vision/mnist/wgan.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
using Flux, Flux.Data.MNIST
using Flux: @epochs, back!, testmode!, throttle
using Base.Iterators: partition
using NNlib: relu, leakyrelu
using Distributions: Uniform
using CUDAnative:tanh
using CuArrays

# Encode MNIST images as compressed vectors that can later be decoded back into
# images.
BATCH_SIZE = 128
training_step = 0
c = 0.01f0
gen_update_frq = 5 # Updates generators every 5 training steps

imgs = MNIST.images()

# Partition into batches of size 128
data = [float(hcat(vec.(imgs)...)) for imgs in partition(imgs, BATCH_SIZE)]
#data = gpu.(data)

NUM_EPOCHS = 50
noise_dim = 100
channels = 128
hidden_dim = 7 * 7 * channels

dist = Uniform(-1, 1)
############################### WGAN Architecture ##############################
################################## Generator ###################################

fc_gen = Chain(Dense(noise_dim, 1024), BatchNorm(1024, relu),
Dense(1024, hidden_dim), BatchNorm(hidden_dim, relu))
deconv_ = Chain(ConvTranspose((4,4), channels=>64;stride=(2,2),pad=(1,1)), BatchNorm(64, relu),
ConvTranspose((4,4), 64=>1, tanh;stride=(2,2), pad=(1,1)))

generator = Chain(fc_gen..., x -> reshape(x, 7, 7, channels, :), deconv_...) |> gpu

################################## Discriminator ###############################

fc_disc = Chain(Dense(hidden_dim, 1024), BatchNorm(1024),
x->leakyrelu.(x, 0.2f0), Dense(1024, 1))
conv_ = Chain(Conv((4,4), 1=>64;stride=(2,2), pad=(1,1)), x->leakyrelu.(x, 0.2f0),
Conv((4,4), 64=>channels; stride=(2,2), pad=(1,1)), BatchNorm(channels),
x->leakyrelu.(x, 0.2f0))

discriminator = Chain(conv_..., x->reshape(x, hidden_dim, :), fc_disc...) |> gpu

################################################################################

opt_gen = ADAM(params(generator), 0.001f0; β1 = 0.5f0)
opt_disc = ADAM(params(discriminator), 0.001f0; β1 = 0.5f0)

############################### Helper Functions ###############################
function nullify_grad!(p)
if typeof(p) <: TrackedArray
p.grad .= 0.0f0
end
return p
end

function zero_grad!(model)
model = mapleaves(nullify_grad!, model)
end

############################ Saving generated images ###########################
using Images

img(x) = Gray.(reshape((x+1)/2, 28, 28))

function sample()
# 36 random digits
noise = [rand(dist, noise_dim, 1) |> gpu for i=1:36]

testmode!(generator)
fake_imgs = img.(map(x -> cpu(generator(x).data), noise))
testmode!(generator, false)

vcat([hcat(imgs...) for imgs in partition(fake_imgs, 6)]...)
end

cd(@__DIR__)

################################################################################

function train(x)
global training_step
z = rand(dist, noise_dim, BATCH_SIZE) |> gpu
inp = reshape(2x - 1, 28, 28, 1, :) |> gpu

zero_grad!(discriminator)

D_real = discriminator(inp)
D_real_loss = -mean(D_real)

fake_x = generator(z)
D_fake = discriminator(fake_x)
D_fake_loss = mean(D_fake)

D_loss = D_real_loss + D_fake_loss

Flux.back!(D_loss)
opt_disc()

for p in params(discriminator)
p.data .= clamp.(p.data, -c, c)
end

if (training_step+1) % gen_update_frq == 0
zero_grad!(generator)
z = rand(dist, noise_dim, BATCH_SIZE) |> gpu
fake_x = generator(z)
D_fake = discriminator(fake_x)
G_loss = -mean(D_fake)
Flux.back!(G_loss)
opt_gen()

println("D loss: $(D_loss.data) | G loss: $(G_loss.data)")
end

training_step += 1
#param(1.0f0)
end

#evalcb = throttle(() -> (save("sample_wgan.png", sample()); println("Sample saved")), 25)
#@epochs 50 Flux.train!(train, zip(data), SGD(params(generator), 0.0f0), cb=evalcb)

for e = 1:NUM_EPOCHS
for imgs in data
train(imgs)
end
println("Epoch $e over.")
end

save("sample_wgan.png", sample())