Skip to content

Guqi1901/secure-computation-on-additive-shares

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 

Repository files navigation

Info

This is a supporting document for the paper STR: Secure Computation on additive shares using the share-transform-reveal strategy.

STR: Secure computation on additive shares using the share-transform-reveal strategy

By Zhihua Xia, Qi Gu, Wenhao Zhou, Lizhi Xiong, Jian Weng, Neal N. Xiong

This paper is accepted by IEEE Transactions on computers now (doi: 10.1109/TC.2021.3073171). Thanks to the editors and reviewers for their time

If you have any suggestions or problems with the code or this document, please contact me by email: 634337549@qq.com

We provide the demo codes for all the protocols shown in the paper. For convenience and readability, the demo only uses the (2,2)-threshold assumption, and the interaction operations are not simulated. We try to use the same symbols like that in the paper.

Please download this md file and open it with some better md readers (e.g., typora) to support LATEX.

Usage

The codes use the library spfpm to control the decimal length. Thus, please install it before executing the codes. We have written the test code for each protocol, and you can execute them at will.

If you want to use the protocols in a specific task, please note that we here just provide the demo rather than a library. We believe you should do the following to use the codes in a specific task:

  1. ensure all the nonlinear steps in the task (for instance, ReLU layer)

  2. rewrite these steps based on the demo and ensure the parallelization is used (always based on the matrix)

  3. deploy code (combine each step) in multiple terminals and ensure synchronization

Besides, the user should ensure four parameters before the task: 1) $intbit$: all the values appeared in the task (plain-text state) should in the range $(-2^{intbit}, 2^{intbit})$. 2) $shareintbit$: the true $secret$ will be covered in the range $(-2^{shareintbit}, 2^{shareintbit})$. It should be at least two times of $intbit$. 3) $cfracbit$: the precision of $secret$ and $additive$ $share$. 4) $efracbit$: the precision of $multiplicative$ $share$.

Detail Consumption in theory

We evaluate the number of computations involved in each protocol. The communication consumptions have been described in the paper; thus, we skip it. We show consumption separately according to the protocol. Note that here $add/sub/mul$ are all executed in a ring.

Protocols offline phase
$add/sub$ on ASS $add/sub$ on MSS others
$\texttt{SecMul}$ $3(n-1)$ $0$ 1 $mul$ on secrets
$\texttt{SecMulRes}$ $n-1$ $n-1$ 1 $exp$ on secret
$\texttt{SecAddRes}$ $4(n-1)$ $n-1$ 1 $mul$ on secrets, 1 $exp$ on secret
$\texttt{SecExp}$ $n-1$ $n-1$ 1 $exp$ on secret
$\texttt{SecLog}$ $4(n-1)$ $n-1$ 1 $mul$ on secrets, 1 $exp$ on secret
$\texttt{SecPow}$ $5(n-1)$ $2(n-1)$ 1 $mul$ on secrets, 2 $exp$ on secret
$\texttt{SecSin}$ $(n-1)2^{(n-1)}$ $(n-1)2^{n-1}$ $2^{(n-1)}$ $exp$ on secret
$\texttt{SecCmp}$ $4(n-1)$ $0$ 1 $mul$ on secrets
$\texttt{SecDiv}$ $7(n-1)$ $0$ 2 $mul$ on secrets
$\texttt{SecMatMul}$ $3d^2(n-1)$ $0$ 1 $matmul$ on secret matrices
$\texttt{SecMatInv}$ $3d^2(n-1)$ $0$ 1 $matmul$ on secret matrices
$\texttt{SecMatEigen}$ $(12d^2+4)(n-1)$ $0$ 3 $matmul$ on secret matrices, $d^2+1$ $mul$ on secrets
$\texttt{SecThreeMul}$ $13(n-1)$ $0$ 2 $mul$ on secrets
$\texttt{SecArctan}$ $\frac{23}{2}n^2-\frac{69}{2}n+23$ $0$ $5(n-1)$ $mul$ on secrets
Protocols online phase
$add/sub$ on ASS $mul$ on $ASS$ $add/sub$ on $MSS$ $mul$ on MSS others
$\texttt{SecMul}$ $2n^2+2n+1$ $2n+1$ $0$ $0$ -
$\texttt{SecMulRes}$ $0$ $n$ $2n-1$ $0$ $n$ $exp$ on secret
$\texttt{SecAddRes}$ $2n^2+3n$ $2n+1$ $1$ $0$ $1$ $log$ on secret
$\texttt{SecExp}$ $0$ $n$ $2n-1$ $0$ $n$ $exp$ on secret
$\texttt{SecLog}$ $2n^2+3n$ $2n+1$ $1$ $0$ $1$ $log$ on secret
$\texttt{SecPow}$ $2n^2+3n$ $3n+1$ $2n$ $n$ $n$ $exp$ on secret, $1$ $log$ on secret$
$\texttt{SecSin}$ $2^{n-1}-1$ $n2^{n-1}$ $(2n-1)2^{n-1}$ $0$ $n2^{n-1}$ $exp$ on secret, $n$ $sin$ and $cos$ on additive $share$
$\texttt{SecCmp}$ $3n^2+2n+1$ $2n+1$ $0$ $0$ -
$\texttt{SecDiv}$ $5n^2+3n+2$ $5n^2+2$ $0$ $0$ $n$ $div$ on secret (with 1)
$\texttt{SecMatMul}$ $2d^2n^2+2d^3n+d^3$ $2d^3n+d^3$ $0$ $0$ -
$\texttt{SecMatInv}$ $3d^2n^2+(3d^3-2d^2)n+d^3$ $3d^3n+d^3$ $0$ $0$ $n$ $matInv$ on secret matrix
$\texttt{SecMatEigen}$ $(9d^2+3)n^2+$$(8d^3+1)n+3d^3+1$ $(8d^3+2d^2+d+2)n$+$2d^3+d^2+1$ $0$ $0$ $n$ $div$ on secret (with 1), $n$ $matInv$ on secret matrix, $1$ rounds of solving eigenvalue and eigenvector on secret matrix
$\texttt{SecThreeMul}$ $9n^2+15n+4$ $15n+5$ $0$ $0$ -
$\texttt{SecArctan}$ $\frac{16}{3}n^3+\frac{33}{2}n^2+\frac{115}{6}n-41$ $6n^2+14n-20$ $0$ $0$ $\frac{1}{2}n^2+\frac{1}{2}n-1$ $div$ on secrets, $n$ $arctan$ on secret

Performance evaluation in practical

a)

We test the following protocols with two kinds of input secret: 1.the exponent is uniformly generated in $[-intbit, intbit]$; 2. the exponent is generated under the normal distribution. The sign of secret is uniformly random. The $intbit$ of the secret is set as 16, the $intbit$ of share is set as 48. The $fracbit$ of additive share is set as 48/56/64; the $fracbit$ of multiplicative share is set as 24/64. The base of multiplicative share is . The true secret is represented by float32.

We test each protocol's actual loss under the different settings; all values result from a million experiments. Compared with the real value, if the experimental error is more than $10^{-3}$, we take it as an error. For example, the loss of SecMul is shown in the following table.

SecMul: $[xy]_i$ $ \leftarrow $ $[x]_i, [y]_i$

SecMul (48, 24) (56, 24) (64, 24) (64, 64)
errorCount1 0 0 0 0
meanError1 1.29E-09 1.30E-09 1.32E-09 1.30E-09
maxError1 9.45E-07 9.52E-07 9.52E-07 9.45E-07
errorCount2 0 0 0 0
meanError2 3.52E-15 6.55E-17 6.47E-17 6.46E-17
maxError2 8.52E-14 5.44E-15 7.01E-15 6.59E-15

Here, errorCount1 means that under the setting that the exponent is uniformly generated in $[-intbit, intbit]$, the number of errors that is more than 10^3 is 0. The meanError and maxError mean that the actual mean and max loss in all experiments. The following tables are expressed in the same way.

SecThreeMul: $[xyz]_i \leftarrow [x]_i, [y]_i, [z]_i$

SecThreeMul (48, 24) (56, 24) (64, 24) (64, 64)
errorCount1 1451 1422 1462 1390
meanError1 1.15E-05 1.06E-05 1.06E-05 1.00E-05
maxError1 0.16 0.1336 0.123 0.122
errorCount2 0 0 0 0
meanError2 1.51E-10 5.91E-13 2.32E-15 2.32E-15
maxError2 1.21E-09 4.75E-12 2.77E-14 3.71E-14

SecMulRes: $[x]_i \leftarrow _i$

SecMulRes (48, 24) (56, 24) (64, 24) (64, 64)
errorCount1 18110 325 0 0
meanError1 5.19E-04 1.97E-06 7.59E-09 7.61E-09
maxError1 0.88 0.003 1.15E-05 1.43E-05
errorCount2 0 0 0 0
meanError2 3.08E-07 2.68E-08 2.62E-08 4.33E-12
maxError2 7.07E-05 8.62E-07 9.89E-07 1.07E-09

SecAddRes: $_i \leftarrow [x]_i$

SecAddRes (48, 24) (56, 24) (64, 24) (64, 64)
errorCount1 83931 70595 67724 0
meanError1 8.10E-04 3.05E-04 2.88E-04 7.65E-09
maxError1 0.875 0.027 0.022 1.28E-05
errorCount2 0 0 0 0
meanError2 2.12E-07 6.74E-08 6.75E-08 2.37E-12
maxError2 7.14E-05 2.26E-06 2.98E-06 1.13E-09

SecExp: $[a^x]_i \leftarrow [x]_i$, here we choose $a = 2$

SecExp (48, 24) (56, 24) (64, 24) (64, 64)
errorCount1 18026 277 0 0
meanError1 5.09E-04 1.92E-06 7.46E-09 7.49E-09
maxError1 0.89 0.003 1.20E-05 1.10E-05
errorCount2 0 0 0 0
meanError2 3.08E-07 2.67E-08 2.61E-08 4.42E-12
maxError2 8.56E-05 9.67E-07 9.77E-07 1.04E-09

SecLog: $[log_ax]\leftarrow[x]_i$, here we choose $a = 2$

SecLog (48, 24) (56, 24) (64, 24) (64, 64)
errorCount1 83976 71079 68034 0
meanError1 8.13E-04 3.08E-04 2.86E-04 7.79E-09
maxError1 0.852 0.026 0.027 1.38E-05
errorCount2 0 0 0 0
meanError2 2.13E-07 6.73E-08 6.75E-08 2.36E-12
maxError2 5.86E-05 2.14E-06 3.93E-06 1.25E-09

A special case of SecPow ($a=\frac{1}{2}$). Here - means that the error is caused by insufficient $fracbits$ (over the assumption of finite field).

There are two main tricks to this problem:

  1. use bigger fractional bit

  2. execute two protocols in parallel, after getting the result, use $\texttt{SecCmp}$ to judge that whether the difference of them is less than delta

Since the possibility of error is too low (always less than 1/10000), it is necessary to decide whether to use the second trick according to the actual task's risk. The error in the next protocols can all be coped with the above two tricks.

SecSqrt (48, 24) (56, 24) (64, 24) (64, 64)
errorCount1 26 0 0 0
meanError1 - 7.32E-07 6.74E-07 3.76E-11
maxError1 - 2.24E-05 2.24E-05 2.09E-08
errorCount2 0 0 0 0
meanError2 9.66E-08 2.50E-08 2.48E-08 1.09E-12
maxError2 1.41E-05 2.37E-07 2.28E-07 2.32E-10

SecSin: $[sin\theta]_i\leftarrow[\theta]_i$. Here we get rid of extreme error data (always too big) and get more general results

SecSin (48, 24) (56, 24) (64, 24) (64, 64)
errorCount1 1 1 8 2
meanError1 4.03E-07 1.81E-08 1.81E-08 6.05E-12
maxError1 2.78E-05 1.17E-07 8.12E-08 3.77E-10
errorCount2 2 5 1 4
meanError2 4.18E-07 2.85E-08 2.92E-08 6.26E-12
maxError2 2.10E-05 1.25E-07 8.17E-08 3.37E-10

SecArctan:$[arctan\theta]_i\leftarrow[\theta]_i$

SecArctan (48, 24) (56, 24) (64, 24) (64, 64)
errorCount1 7901 2838 40 47
meanError1 0.023 0.009 1.25E-04 1.47E-04
maxError1 π π π π
errorCount2 123 3 0 0
meanError2 9.64E-06 1.07E-06 7.57E-09 7.60E-09
maxError2 3.007 0.002 2.72E-05 1.90E-05

b)

We test the following protocols with only the second kind of input. The protocols on matrices always use the setting of (64, 64); we test three different kinds of matrix size: $4\times4, 16\times16, 64\times64$. Limited by time, the protocols on matrices are only tested $10^5$ times.

SecDiv: $\frac{x}{y}_i\leftarrow [x]_i,[y]_i$

SecDiv (48, 24) (56, 24) (64, 24) (64, 64)
errorCount 3 0 0 0
meanError 5.76E-07 2.24E-09 8.64E-12 8.63E-12
maxError 0.001 1.02E-05 2.78E-08 3.61E-08

SecMatMul: $[XY]_i\leftarrow[X]_i, [Y]_i$

SecMatMul 4*4 16*16 64*64
errorCount 0 0 0
meanError 9.27E-16 2.84E-15 4.79E-14
maxError 3.64E-14 5.17E-14 1.86E-13

SecMatInv: $[X^{-1}]_i\leftarrow [X]_i$

SecMatInv 4*4 16*16 64*64
errorCount 0 0 0
meanError 9.07E-12 2.74E-11 1.07E-10
maxError 2.08E-07 1.74E-07 2.76E-07

SecMatEigen: additive $share$ of eigenvalues and eigenvectors of $X $$\leftarrow$ $[X]_i$

SecMatEigen 4*4 16*16 64*64
errorCount 1301 19 586
meanValueErr 1.61E-03 2.98E-06 2.28E-05
maxValueErr 2.2695 0.001 0.005
meanVectorErr 1.29E-03 1.49E-07 4.08E-10
maxVectorErr 1.898 2.32E-04 1.19E-07

About

This is the demo codes for our corresponding paper

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages