Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve description of design/use cases #292

Merged
merged 1 commit into from
Mar 24, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,11 @@ exported as pure Python functions, NumPy-compatible functions (Walt et al., 2011

The library implements a mu + lambda evolution strategy (Beyer and Schwefel, 2002) to evolve a population of individuals to optimize an objective function.

Design decisions/use cases
==========================

We designed hal-cgp for optimization problems in which individual fitness evaluations are computationally expensive. The library is hence not optimized for high performance, but rather puts ease of use and extensibility first. Furthermore we take steps to reduce the number of redundant fitness evaluations, for example by avoiding reevaluating parents at the beginning of each episode and providing a convenient decorator to cache results on disk. If for your use case individual fitness evaluations are fast and the performance of the library itself becomes a relevant factor, you may want to check out https://github.com/darioizzo/dcgp or http://www.cgplibrary.co.uk/files2/About-txt.html.

.. image-start

.. image:: ./cgp-sketch.png
Expand Down