Skip to content

ICML2022-LBYL/LBYL2022

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LBYL - code

This is the authors' implementation of the following paper: LeaveBeforeYouLeave: Training-Free Restoration of Pruned Neural Networks Without Fine-Tuning

Contents

  1. Requirements
  2. Pre-trained models and Dataset
  3. Our experimental setting(GPU and CPU)

1 Requirements

Python environment & main libraries:

  • python 3.7
  • pytorch 1.7
  • torchvision 0.8
  • scikit-learn 0.23
  • numpy 1.19
  • scipy 1.5
  • torchsummaryx 1.3.0

2 Pre-trained models and Dataset

We release the pretrained models for CIFAR-10 and CIFAR-100 in save_models directory and also use pretrained ResNet-34 and ResNet-101 on ImageNet, both of which are released by PyTorch. If you run the experiments for ImageNet, you should download the ImageNet(ILSVRC2012) validatation set.

Arguments

Required:

  • --dataset: Choose datset. Option: fashionMNIST or cifar10 or cifar100 or ImageNet
  • --arch : Choose architecture Option: LeNet_300_100 on fashionMNIST or VGG16 on cifar10 or ResNet50 on cifar100 or ResNet34 on ImageNet or ResNet101 on ImageNet
  • --model-type: Choose model type Option: OURS or merge or prune or coreset for LeNet-300-100 and ResNet50
  • --criterion : Choose criterion Option: l2-norm or l2-GM or l1-norm or random_1 or random_2 or random_3
  • --lamda-1 : Choose lambda_1
  • --lamda-2 : Choose lambda_2
  • --pruning-ratio : Choose pruning ratio

LeNet-300-100 on FashionMINST

The following results can be reproduced with command:

python main.py --arch LeNet_300_100 --pretrained ./saved_models/LeNet_300_100.original.pth.tar --model-type OURS --dataset fashionMNIST --criterion l2-norm --lamda-1 0.0 --lamda-2 0.3 --pruning-ratio 0.5
python main.py --arch LeNet_300_100 --pretrained ./saved_models/LeNet_300_100.original.pth.tar --model-type OURS --dataset fashionMNIST --criterion l2-norm --lamda-1 0.0 --lamda-2 0.6 --pruning-ratio 0.6
python main.py --arch LeNet_300_100 --pretrained ./saved_models/LeNet_300_100.original.pth.tar --model-type OURS --dataset fashionMNIST --criterion l2-norm --lamda-1 0.0 --lamda-2 0.3 --pruning-ratio 0.7
python main.py --arch LeNet_300_100 --pretrained ./saved_models/LeNet_300_100.original.pth.tar --model-type OURS --dataset fashionMNIST --criterion l2-norm --lamda-1 0.0 --lamda-2 1e-06 --pruning-ratio 0.8

Pruning Criterion : L2 - norm

Pruning ratio lamda2 acc(Ours) acc(NM) acc(prune)
50% 0.3 88.83 87.86 87.86
60% 0.6 87.75 88.07 83.03
70% 0.3 83.92 83.27 71.21
80% 1e-06 78.05 77.11 63.9

We offer the implementation of Coreset in LeNet-300-100 on FashionMNIST. If you test the implementation of Coreset, run the below command.

python Test_Coreset.py --pruning-ratio 0.5

VGG16 on CIFAR-10

The following results can be reproduced with command:

python main.py --arch VGG16 --pretrained ./saved_models/VGG.cifar10.original.pth.tar --model-type OURS --criterion l2-norm --lamda-1 0.000006 --lamda-2 0.0001 --pruning-ratio 0.1
python main.py --arch VGG16 --pretrained ./saved_models/VGG.cifar10.original.pth.tar --model-type OURS --criterion l2-norm --lamda-1 0.000004 --lamda-2 0.006 --pruning-ratio 0.2
python main.py --arch VGG16 --pretrained ./saved_models/VGG.cifar10.original.pth.tar --model-type OURS --criterion l2-norm --lamda-1 0.000001 --lamda-2 0.01 --pruning-ratio 0.3
python main.py --arch VGG16 --pretrained ./saved_models/VGG.cifar10.original.pth.tar --model-type OURS --criterion l2-norm --lamda-1 0.000002 --lamda-2 0.01 --pruning-ratio 0.4
python main.py --arch VGG16 --pretrained ./saved_models/VGG.cifar10.original.pth.tar --model-type OURS --criterion l2-norm --lamda-1 0.00004 --lamda-2 0.0002 --pruning-ratio 0.5

Pruning Criterion : L2 - norm

Pruning ratio lamda1 lamda2 acc(Ours) acc(NM) acc(prune)
10% 0.000006 0.0001 92.04 91.93 89.43
20% 0.000004 0.006 87.84 87.24 71.77
30% 0.000001 0.01 83.25 76.91 56.95
40% 0.000002 0.01 66.81 54.32 31.74
50% 0.00004 0.0002 45.71 32.58 12.37

ResNet50 on CIFAR-100

We only provide implementation of Coreset in ResNet-50 on CIFAR-100 because authors of Coreset did not offer the implementation on CNNs. If you test the Coreset, run the below command

python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type coreset --dataset cifar100 --pruning-ratio 0.1

The following results can be reproduced with command:

python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type OURS --dataset cifar100 --criterion l2-norm --lamda-1 0.00002 --lamda-2 0.006 --pruning-ratio 0.1
python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type OURS --dataset cifar100 --criterion l2-norm --lamda-1 0.00001 --lamda-2 0.002 --pruning-ratio 0.2
python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type OURS --dataset cifar100 --criterion l2-norm --lamda-1 0.00001 --lamda-2 0.002 --pruning-ratio 0.3
python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type OURS --dataset cifar100 --criterion l2-norm --lamda-1 0.00001 --lamda-2 0.001 --pruning-ratio 0.4
python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type OURS --dataset cifar100 --criterion l2-norm --lamda-1 0.000001 --lamda-2 0.001 --pruning-ratio 0.5

Pruning Criterion : L2 - norm

Pruning ratio lamda1 lamda2 acc(Ours) acc(NM) acc(prune)
10% 0.00002 0.006 78.14 77.28 75.14
20% 0.00001 0.002 76.15 72.73 63.39
30% 0.00001 0.002 73.29 64.47 39.96
40% 0.00001 0.001 65.21 46.4 15.32
50% 0.000001 0.001 52.61 25.98 5.22

ResNet34 on ImageNet

The following results can be reproduced with command:

python main.py --arch ResNet34 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.00007 --lamda-2 0.05 --pruning-ratio 0.1
python main.py --arch ResNet34 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.00002 --lamda-2 0.07 --pruning-ratio 0.2
python main.py --arch ResNet34 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.0005 --lamda-2 0.03 --pruning-ratio 0.3

Pruning Criterion : L2 - norm

Pruning ratio lamda1 lamda2 acc(Ours) acc(NM) acc(prune)
10% 0.00007 0.05 69.22 66.96 63.74
20% 0.00002 0.07 62.49 55.7 42.81
30% 0.0005 0.03 47.59 39.22 17.02

ResNet101 on ImageNet

The following results can be reproduced with command:

python main.py --arch ResNet101 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.000004 --lamda-2 0.02 --pruning-ratio 0.1
python main.py --arch ResNet101 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.000001 --lamda-2 0.02 --pruning-ratio 0.2
python main.py --arch ResNet101 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.000002 --lamda-2 0.03 --pruning-ratio 0.3

Pruning Criterion : L2 - norm

Pruning ratio lamda1 lamda2 acc(Ours) acc(NM) acc(prune)
10% 0.000004 0.02 74.59 72.36 68.9
20% 0.000001 0.02 68.47 61.42 45.78
30% 0.000002 0.03 55.51 37.38 10.32

Hyperparameters

3 Our experimental setting

We use NVIDIA Quadro RTX 6000 GPU and Intel Core Xeon Gold5122

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Languages