Skip to content
Demo code for Horikawa and Kamitani (2017) Generic decoding of seen and imagined objects using hierarchical visual features. Nat Commun https://www.nature.com/articles/ncomms15037.
MATLAB C Python
Branch: master
Clone or download

Latest commit

Fetching latest commit…
Cannot retrieve the latest commit at this time.

Files

Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
code Update README.md May 25, 2019
data
docs
.gitignore
README.md

README.md

Generic Object Decoding

This repository contains the data and demo codes for replicating results in our paper: Horikawa and Kamitani (2017) Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications 8:15037. The generic object decoding approach enabled decoding of arbitrary object categories including those not used in model training.

Data (fMRI data and visual features)

The preprocessed fMRI data for five subjects (training, test_perception, and test_imagery) and visual features (CNN1-8, HMAX1-3, GIST, and SIFT) are available at figshare. The fMRI data were saved as the BrainDecoderToolbox2/bdpy format.

The unpreprocessed fMRI data is available at OpenNeuro.

Visual images

For copyright reasons, we do not make the visual images used in our experiments publicly available. You can request us to share the stimulus images at https://forms.gle/ujvA34948Xg49jdn9.

Demo program

Demo programs for Matlab and Python are available in code/matlab and code/python, respectively. See README.md in each directory for the details.

You can’t perform that action at this time.