Skip to content
/ DELTA_FL Public

[NeurIPS 2023]DELTA: Diverse Client Sampling for Fasting Federated Learning

License

Notifications You must be signed in to change notification settings

L3030/DELTA_FL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

DELTA: Diverse Client Sampling for Fasting Federated Learning

Official implementation of the NeurIPS 2023 paper "DELTA: Diverse Client Sampling for Fasting Federated Learning".

Overview

Abstract: Partial client participation has been widely adopted in Federated Learning (FL) to reduce the communication burden efficiently. However, an inadequate client sampling scheme can lead to the selection of unrepresentative subsets, resulting in significant variance in model updates and slowed convergence. Existing sampling methods are either biased or can be further optimized for faster convergence. In this paper, we present DELTA, an unbiased sampling scheme designed to alleviate these issues. DELTA characterizes the effects of client diversity and local variance, and samples representative clients with valuable information for global model updates. In addition, DELTA is a proven optimal unbiased sampling scheme that minimizes variance caused by partial client participation and outperforms other unbiased sampling schemes in terms of convergence. Furthermore, to address full-client gradient dependence, we provide a practical version of DELTA depending on the available clients' information, and also analyze its convergence. Our results are validated through experiments on both synthetic and real-world datasets.

About

[NeurIPS 2023]DELTA: Diverse Client Sampling for Fasting Federated Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Languages