Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Code for reproducing cifar-10 examples in "Deep Residual Learni… #38

Merged
merged 8 commits into from
Feb 1, 2016
325 changes: 325 additions & 0 deletions papers/deep_residual_learning/Deep_Residual_Learning_CIFAR-10.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,325 @@
#!/usr/bin/env python

"""
Lasagne implementation of CIFAR-10 examples from "Deep Residual Learning for Image Recognition" (http://arxiv.org/abs/1512.03385)

Check the accompanying files for pretrained models. The 32-layer network (n=5), achieves a validation error of 7.42%,
while the 56-layer network (n=9) achieves error of 6.75%, which is roughly equivalent to the examples in the paper.
"""

from __future__ import print_function

import sys
import os
import time
import string
import random
import pickle

import numpy as np
import theano
import theano.tensor as T
import lasagne

# for the larger networks (n>=9), we need to adjust pythons recursion limit
sys.setrecursionlimit(10000)

# ##################### Load data from CIFAR-10 dataset #######################
# this code assumes the cifar dataset from 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
# has been extracted in current working directory

def unpickle(file):
import cPickle
fo = open(file, 'rb')
dict = cPickle.load(fo)
fo.close()
return dict

def load_data():
xs = []
ys = []
for j in range(5):
d = unpickle('cifar-10-batches-py/data_batch_'+`j+1`)
x = d['data']
y = d['labels']
xs.append(x)
ys.append(y)

d = unpickle('cifar-10-batches-py/test_batch')
xs.append(d['data'])
ys.append(d['labels'])

x = np.concatenate(xs)/np.float32(255)
y = np.concatenate(ys)
x = np.dstack((x[:, :1024], x[:, 1024:2048], x[:, 2048:]))
x = x.reshape((x.shape[0], 32, 32, 3)).transpose(0,3,1,2)

# subtract per-pixel mean
pixel_mean = np.mean(x[0:50000],axis=0)
#pickle.dump(pixel_mean, open("cifar10-pixel_mean.pkl","wb"))
x -= pixel_mean

# create mirrored images
X_train = x[0:50000,:,:,:]
Y_train = y[0:50000]
X_train_flip = X_train[:,:,:,::-1]
Y_train_flip = Y_train
X_train = np.concatenate((X_train,X_train_flip),axis=0)
Y_train = np.concatenate((Y_train,Y_train_flip),axis=0)

X_test = x[50000:,:,:,:]
Y_test = y[50000:]

return dict(
X_train=lasagne.utils.floatX(X_train),
Y_train=Y_train.astype('int32'),
X_test = lasagne.utils.floatX(X_test),
Y_test = Y_test.astype('int32'),)

# ##################### Build the neural network model #######################

#from lasagne.layers import Conv2DLayer as ConvLayer
from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer
from lasagne.layers import ElemwiseSumLayer
from lasagne.layers import InputLayer
from lasagne.layers import DenseLayer
from lasagne.layers import GlobalPoolLayer
from lasagne.layers import PadLayer
from lasagne.layers import ExpressionLayer
from lasagne.layers import NonlinearityLayer
from lasagne.nonlinearities import softmax, rectify
from lasagne.layers import batch_norm

def build_cnn(input_var=None, n=5):

# create a residual learning building block with two stacked 3x3 convlayers as in paper
def residual_block(l, increase_dim=False, projection=False):
input_num_filters = l.output_shape[1]
if increase_dim:
first_stride = (2,2)
out_num_filters = input_num_filters*2
else:
first_stride = (1,1)
out_num_filters = input_num_filters

stack_1 = batch_norm(ConvLayer(l, num_filters=out_num_filters, filter_size=(3,3), stride=first_stride, nonlinearity=rectify, pad='same', W=lasagne.init.HeNormal(gain='relu')))
stack_2 = batch_norm(ConvLayer(stack_1, num_filters=out_num_filters, filter_size=(3,3), stride=(1,1), nonlinearity=None, pad='same', W=lasagne.init.HeNormal(gain='relu')))

# add shortcut connections
if increase_dim:
if projection:
# projection shortcut, as option B in paper
projection = batch_norm(ConvLayer(l, num_filters=out_num_filters, filter_size=(1,1), stride=(2,2), nonlinearity=None, pad='same', b=None))
block = NonlinearityLayer(ElemwiseSumLayer([stack_2, projection]),nonlinearity=rectify)
else:
# identity shortcut, as option A in paper
identity = ExpressionLayer(l, lambda X: X[:, :, ::2, ::2], lambda s: (s[0], s[1], s[2]//2, s[3]//2))
padding = PadLayer(identity, [out_num_filters//4,0,0], batch_ndim=1)
block = NonlinearityLayer(ElemwiseSumLayer([stack_2, padding]),nonlinearity=rectify)
else:
block = NonlinearityLayer(ElemwiseSumLayer([stack_2, l]),nonlinearity=rectify)

return block

# Building the network
l_in = InputLayer(shape=(None, 3, 32, 32), input_var=input_var)

# first layer, output is 16 x 32 x 32
l = batch_norm(ConvLayer(l_in, num_filters=16, filter_size=(3,3), stride=(1,1), nonlinearity=rectify, pad='same', W=lasagne.init.HeNormal(gain='relu')))

# first stack of residual blocks, output is 16 x 32 x 32
for _ in range(n):
l = residual_block(l)

# second stack of residual blocks, output is 32 x 16 x 16
l = residual_block(l, increase_dim=True)
for _ in range(1,n):
l = residual_block(l)

# third stack of residual blocks, output is 64 x 8 x 8
l = residual_block(l, increase_dim=True)
for _ in range(1,n):
l = residual_block(l)

# average pooling
l = GlobalPoolLayer(l)

# fully connected layer
network = DenseLayer(
l, num_units=10,
W=lasagne.init.HeNormal(),
nonlinearity=softmax)

return network

# ############################# Batch iterator ###############################

def iterate_minibatches(inputs, targets, batchsize, shuffle=False, augment=False):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
if augment:
# as in paper :
# pad feature arrays with 4 pixels on each side
# and do random cropping of 32x32
padded = np.pad(inputs[excerpt],((0,0),(0,0),(4,4),(4,4)),mode='constant')
random_cropped = np.zeros(inputs[excerpt].shape, dtype=np.float32)
crops = np.random.random_integers(0,high=8,size=(batchsize,2))
for r in range(batchsize):
random_cropped[r,:,:,:] = padded[r,:,crops[r,0]:(crops[r,0]+32),crops[r,1]:(crops[r,1]+32)]
inp_exc = random_cropped
else:
inp_exc = inputs[excerpt]

yield inp_exc, targets[excerpt]

# ############################## Main program ################################

def main(n=5, num_epochs=82, model=None):
# Check if cifar data exists
if not os.path.exists("./cifar-10-batches-py"):
print("CIFAR-10 dataset can not be found. Please download the dataset from 'https://www.cs.toronto.edu/~kriz/cifar.html'.")
return

# Load the dataset
print("Loading data...")
data = load_data()
X_train = data['X_train']
Y_train = data['Y_train']
X_test = data['X_test']
Y_test = data['Y_test']

# Prepare Theano variables for inputs and targets
input_var = T.tensor4('inputs')
target_var = T.ivector('targets')

# Create neural network model
print("Building model and compiling functions...")
network = build_cnn(input_var, n)
print("number of parameters in model: %d" % lasagne.layers.count_params(network, trainable=True))

if model is None:
# Create a loss expression for training, i.e., a scalar objective we want
# to minimize (for our multi-class problem, it is the cross-entropy loss):
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()
# add weight decay
all_layers = lasagne.layers.get_all_layers(network)
l2_penalty = lasagne.regularization.regularize_layer_params(all_layers, lasagne.regularization.l2) * 0.0001
loss = loss + l2_penalty

# Create update expressions for training
# Stochastic Gradient Descent (SGD) with momentum
params = lasagne.layers.get_all_params(network, trainable=True)
lr = 0.1
sh_lr = theano.shared(lasagne.utils.floatX(lr))
updates = lasagne.updates.momentum(
loss, params, learning_rate=sh_lr, momentum=0.9)

# Compile a function performing a training step on a mini-batch (by giving
# the updates dictionary) and returning the corresponding training loss:
train_fn = theano.function([input_var, target_var], loss, updates=updates)

# Create a loss expression for validation/testing
test_prediction = lasagne.layers.get_output(network, deterministic=True)
test_loss = lasagne.objectives.categorical_crossentropy(test_prediction,
target_var)
test_loss = test_loss.mean()
test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var),
dtype=theano.config.floatX)

# Compile a second function computing the validation loss and accuracy:
val_fn = theano.function([input_var, target_var], [test_loss, test_acc])

if model is None:
# launch the training loop
print("Starting training...")
# We iterate over epochs:
for epoch in range(num_epochs):
# shuffle training data
train_indices = np.arange(100000)
np.random.shuffle(train_indices)
X_train = X_train[train_indices,:,:,:]
Y_train = Y_train[train_indices]

# In each epoch, we do a full pass over the training data:
train_err = 0
train_batches = 0
start_time = time.time()
for batch in iterate_minibatches(X_train, Y_train, 128, shuffle=True, augment=True):
inputs, targets = batch
train_err += train_fn(inputs, targets)
train_batches += 1

# And a full pass over the validation data:
val_err = 0
val_acc = 0
val_batches = 0
for batch in iterate_minibatches(X_test, Y_test, 500, shuffle=False):
inputs, targets = batch
err, acc = val_fn(inputs, targets)
val_err += err
val_acc += acc
val_batches += 1

# Then we print the results for this epoch:
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, num_epochs, time.time() - start_time))
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" validation loss:\t\t{:.6f}".format(val_err / val_batches))
print(" validation accuracy:\t\t{:.2f} %".format(
val_acc / val_batches * 100))

# adjust learning rate as in paper
# 32k and 48k iterations should be roughly equivalent to 41 and 61 epochs
if (epoch+1) == 41 or (epoch+1) == 61:
new_lr = sh_lr.get_value() * 0.1
print("New LR:"+str(new_lr))
sh_lr.set_value(lasagne.utils.floatX(new_lr))

# dump the network weights to a file :
np.savez('cifar10_deep_residual_model.npz', *lasagne.layers.get_all_param_values(network))
else:
# load network weights from model file
with np.load(model) as f:
param_values = [f['arr_%d' % i] for i in range(len(f.files))]
lasagne.layers.set_all_param_values(network, param_values)

# Calculate validation error of model:
test_err = 0
test_acc = 0
test_batches = 0
for batch in iterate_minibatches(X_test, Y_test, 500, shuffle=False):
inputs, targets = batch
err, acc = val_fn(inputs, targets)
test_err += err
test_acc += acc
test_batches += 1
print("Final results:")
print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches))
print(" test accuracy:\t\t{:.2f} %".format(
test_acc / test_batches * 100))


if __name__ == '__main__':
if ('--help' in sys.argv) or ('-h' in sys.argv):
print("Trains a Deep Residual Learning network on cifar-10 using Lasagne.")
print("Network architecture and training parameters are as in section 4.2 in 'Deep Residual Learning for Image Recognition'.")
print("Usage: %s [N [MODEL]]" % sys.argv[0])
print()
print("N: Number of stacked residual building blocks per feature map (default: 5)")
print("MODEL: saved model file to load (for validation) (default: None)")
else:
kwargs = {}
if len(sys.argv) > 1:
kwargs['n'] = int(sys.argv[1])
if len(sys.argv) > 2:
kwargs['model'] = sys.argv[2]
main(**kwargs)
Binary file added papers/deep_residual_learning/cifar_model_n5.npz
Binary file not shown.
Binary file added papers/deep_residual_learning/cifar_model_n9.npz
Binary file not shown.