Skip to content

In this paper, we are concentrating on the problem of segmenting tobacco and arbidopsis leaves from an RGB image, an important task in plant phenotyping.To complete this project this task, we use state-of-the-art deep learning architectures: UNET, a convolutional neural network for initial segmentation.

master
Switch branches/tags
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 

Leaf-Segmentation-Challenge-LSC-

My friends Nikhil Vijay S, Harish Kumar Patidar and I did work on the leaf segmentation challenge, Mentored by Mr.Mohit Agarwal on an internship at Bennett University. In this project, we investigate the problem of segmenting rosette leaves from an RGB image, an important task in plant phenotyping. We propose a data-driven approach for this task generalized over different plant species and imaging setups. To accomplish this task, we use state-of- the-art deep learning architectures: UNET, a convolutional neural network for initial segmentation. Evaluation is performed on the leaf segmentation challenge dataset at CVPPP-2017. Despite the small number of training samples in this dataset, as compared to typical deep learning image sets, we obtain satisfactory performance on segmenting leaves from the background as a whole and counting the number of leaves using simple data augmentation strategies. Comparative analysis is provided against methods evaluated on the previous competition datasets.

About

In this paper, we are concentrating on the problem of segmenting tobacco and arbidopsis leaves from an RGB image, an important task in plant phenotyping.To complete this project this task, we use state-of-the-art deep learning architectures: UNET, a convolutional neural network for initial segmentation.

Resources

Releases

No releases published

Packages

No packages published

Languages