Skip to content

Lee-JaeWon/2024-Arxiv-Paper-List-Gaussian-Splatting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 

Repository files navigation

2024-Arxiv-Paper-List-Gaussian-Splatting

This is crawled to find out about the 2024 gaussian splatting papers in arxiv. There may be errors, so please leave a Pull Request or Issue and i will actively apply it.

Updated on May 20.

The Arxiv paper, which was published in 2023, is in the Lee-JaeWon/2023-Arxiv-Paper-List-Gaussian-Splatting repository.

Paper List

# Title Authors Abstract Date Link
257 LIV-GaussMap: LiDAR-Inertial-Visual Fusion for Real-time 3D Radiance Field Map Rendering Sheng Hong,Junjie He,Xinhu Zheng,Chunran Zheng,Shaojie Shen
AbstractWe introduce an integrated precise LiDAR, Inertial, and Visual (LIV) multimodal sensor fused mapping system that builds on the differentiable \pre{surface splatting }\ow{Gaussians} to improve the mapping fidelity, quality, and structural accuracy. Notably, this is also a novel form of tightly coupled map for LiDAR-visual-inertial sensor fusion. This system leverages the complementary characteristics of LiDAR and visual data to capture the geometric structures of large-scale 3D scenes and restore their visual surface information with high fidelity. The initialization for the scene's surface Gaussians and the sensor's poses of each frame are obtained using a LiDAR-inertial system with the feature of size-adaptive voxels. Then, we optimized and refined the Gaussians using visual-derived photometric gradients to optimize their quality and density. Our method is compatible with various types of LiDAR, including solid-state and mechanical LiDAR, supporting both repetitive and non-repetitive scanning modes. Bolstering structure construction through LiDAR and facilitating real-time generation of photorealistic renderings across diverse LIV datasets. It showcases notable resilience and versatility in generating real-time photorealistic scenes potentially for digital twins and virtual reality, while also holding potential applicability in real-time SLAM and robotics domains. We release our software and hardware and self-collected datasets to benefit the community.
January 2024. https://arxiv.org/abs/2401.14857
256 ART3D: 3D Gaussian Splatting for Text-Guided Artistic Scenes Generation Pengzhi Li,Chengshuai Tang,Qinxuan Huang,Zhiheng Li
AbstractIn this paper, we explore the existing challenges in 3D artistic scene generation by introducing ART3D, a novel framework that combines diffusion models and 3D Gaussian splatting techniques. Our method effectively bridges the gap between artistic and realistic images through an innovative image semantic transfer algorithm. By leveraging depth information and an initial artistic image, we generate a point cloud map, addressing domain differences. Additionally, we propose a depth consistency module to enhance 3D scene consistency. Finally, the 3D scene serves as initial points for optimizing Gaussian splats. Experimental results demonstrate ART3D's superior performance in both content and structural consistency metrics when compared to existing methods. ART3D significantly advances the field of AI in art creation by providing an innovative solution for generating high-quality 3D artistic scenes.
May 2024. https://arxiv.org/abs/2405.10508
255 GS-Planner: A Gaussian-Splatting-based Planning Framework for Active High-Fidelity Reconstruction Rui Jin,Yuman Gao,Haojian Lu,Fei Gao
AbstractActive reconstruction technique enables robots to autonomously collect scene data for full coverage, relieving users from tedious and time-consuming data capturing process. However, designed based on unsuitable scene representations, existing methods show unrealistic reconstruction results or the inability of online quality evaluation. Due to the recent advancements in explicit radiance field technology, online active high-fidelity reconstruction has become achievable. In this paper, we propose GS-Planner, a planning framework for active high-fidelity reconstruction using 3D Gaussian Splatting. With improvement on 3DGS to recognize unobserved regions, we evaluate the reconstruction quality and completeness of 3DGS map online to guide the robot. Then we design a sampling-based active reconstruction strategy to explore the unobserved areas and improve the reconstruction geometric and textural quality. To establish a complete robot active reconstruction system, we choose quadrotor as the robotic platform for its high agility. Then we devise a safety constraint with 3DGS to generate executable trajectories for quadrotor navigation in the 3DGS map. To validate the effectiveness of our method, we conduct extensive experiments and ablation studies in highly realistic simulation scenes.
May 2024. https://arxiv.org/abs/2405.10142
254 From NeRFs to Gaussian Splats, and Back Siming He,Zach Osman,Pratik Chaudhari
AbstractFor robotics applications where there is a limited number of (typically ego-centric) views, parametric representations such as neural radiance fields (NeRFs) generalize better than non-parametric ones such as Gaussian splatting (GS) to views that are very different from those in the training data; GS however can render much faster than NeRFs. We develop a procedure to convert back and forth between the two. Our approach achieves the best of both NeRFs (superior PSNR, SSIM, and LPIPS on dissimilar views, and a compact representation) and GS (real-time rendering and ability for easily modifying the representation); the computational cost of these conversions is minor compared to training the two from scratch.
May 2024. https://arxiv.org/abs/2405.09717
253 Splat-MOVER: Multi-Stage, Open-Vocabulary Robotic Manipulation via Editable Gaussian Splatting Ola Shorinwa,Johnathan Tucker,Aliyah Smith,Aiden Swann,Timothy Chen,Roya Firoozi,Monroe Kennedy III,Mac Schwager
AbstractWe present Splat-MOVER, a modular robotics stack for open-vocabulary robotic manipulation, which leverages the editability of Gaussian Splatting (GSplat) scene representations to enable multi-stage manipulation tasks. Splat-MOVER consists of: (i) ASK-Splat, a GSplat representation that distills latent codes for language semantics and grasp affordance into the 3D scene. ASK-Splat enables geometric, semantic, and affordance understanding of 3D scenes, which is critical for many robotics tasks; (ii) SEE-Splat, a real-time scene-editing module using 3D semantic masking and infilling to visualize the motions of objects that result from robot interactions in the real-world. SEE-Splat creates a "digital twin" of the evolving environment throughout the manipulation task; and (iii) Grasp-Splat, a grasp generation module that uses ASK-Splat and SEE-Splat to propose candidate grasps for open-world objects. ASK-Splat is trained in real-time from RGB images in a brief scanning phase prior to operation, while SEE-Splat and Grasp-Splat run in real-time during operation. We demonstrate the superior performance of Splat-MOVER in hardware experiments on a Kinova robot compared to two recent baselines in four single-stage, open-vocabulary manipulation tasks, as well as in four multi-stage manipulation tasks using the edited scene to reflect scene changes due to prior manipulation stages, which is not possible with the existing baselines. Code for this project and a link to the project page will be made available soon.
May 2024. https://arxiv.org/abs/2405.04378
252 GaussianFlow: Splatting Gaussian Dynamics for 4D Content Creation Quankai Gao,Qiangeng Xu,Zhe Cao,Ben Mildenhall,Wenchao Ma,Le Chen,Danhang Tang,Ulrich Neumann
AbstractCreating 4D fields of Gaussian Splatting from images or videos is a challenging task due to its under-constrained nature. While the optimization can draw photometric reference from the input videos or be regulated by generative models, directly supervising Gaussian motions remains underexplored. In this paper, we introduce a novel concept, Gaussian flow, which connects the dynamics of 3D Gaussians and pixel velocities between consecutive frames. The Gaussian flow can be efficiently obtained by splatting Gaussian dynamics into the image space. This differentiable process enables direct dynamic supervision from optical flow. Our method significantly benefits 4D dynamic content generation and 4D novel view synthesis with Gaussian Splatting, especially for contents with rich motions that are hard to be handled by existing methods. The common color drifting issue that happens in 4D generation is also resolved with improved Guassian dynamics. Superior visual quality on extensive experiments demonstrates our method's effectiveness. Quantitative and qualitative evaluations show that our method achieves state-of-the-art results on both tasks of 4D generation and 4D novel view synthesis. Project page: https://zerg-overmind.github.io/GaussianFlow.github.io/
March 2024. https://arxiv.org/abs/2403.12365
251 GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models Taoran Yi,Jiemin Fang,Junjie Wang,Guanjun Wu,Lingxi Xie,Xiaopeng Zhang,Wenyu Liu,Qi Tian,Xinggang Wang
AbstractIn recent times, the generation of 3D assets from text prompts has shown impressive results. Both 2D and 3D diffusion models can help generate decent 3D objects based on prompts. 3D diffusion models have good 3D consistency, but their quality and generalization are limited as trainable 3D data is expensive and hard to obtain. 2D diffusion models enjoy strong abilities of generalization and fine generation, but 3D consistency is hard to guarantee. This paper attempts to bridge the power from the two types of diffusion models via the recent explicit and efficient 3D Gaussian splatting representation. A fast 3D object generation framework, named as GaussianDreamer, is proposed, where the 3D diffusion model provides priors for initialization and the 2D diffusion model enriches the geometry and appearance. Operations of noisy point growing and color perturbation are introduced to enhance the initialized Gaussians. Our GaussianDreamer can generate a high-quality 3D instance or 3D avatar within 15 minutes on one GPU, much faster than previous methods, while the generated instances can be directly rendered in real time. Demos and code are available at https://taoranyi.com/gaussiandreamer/.
October 2023. https://arxiv.org/abs/2310.08529
250 GaussianVTON: 3D Human Virtual Try-ON via Multi-Stage Gaussian Splatting Editing with Image Prompting Haodong Chen,Yongle Huang,Haojian Huang,Xiangsheng Ge,Dian Shao
AbstractThe increasing prominence of e-commerce has underscored the importance of Virtual Try-On (VTON). However, previous studies predominantly focus on the 2D realm and rely heavily on extensive data for training. Research on 3D VTON primarily centers on garment-body shape compatibility, a topic extensively covered in 2D VTON. Thanks to advances in 3D scene editing, a 2D diffusion model has now been adapted for 3D editing via multi-viewpoint editing. In this work, we propose GaussianVTON, an innovative 3D VTON pipeline integrating Gaussian Splatting (GS) editing with 2D VTON. To facilitate a seamless transition from 2D to 3D VTON, we propose, for the first time, the use of only images as editing prompts for 3D editing. To further address issues, e.g., face blurring, garment inaccuracy, and degraded viewpoint quality during editing, we devise a three-stage refinement strategy to gradually mitigate potential issues. Furthermore, we introduce a new editing strategy termed Edit Recall Reconstruction (ERR) to tackle the limitations of previous editing strategies in leading to complex geometric changes. Our comprehensive experiments demonstrate the superiority of GaussianVTON, offering a novel perspective on 3D VTON while also establishing a novel starting point for image-prompting 3D scene editing.
May 2024. https://arxiv.org/abs/2405.07472
249 SparseGS: Real-Time 360\xc2\xb0 Sparse View Synthesis using Gaussian Splatting Haolin Xiong,Sairisheek Muttukuru,Rishi Upadhyay,Pradyumna Chari,Achuta Kadambi
AbstractThe problem of novel view synthesis has grown significantly in popularity recently with the introduction of Neural Radiance Fields (NeRFs) and other implicit scene representation methods. A recent advance, 3D Gaussian Splatting (3DGS), leverages an explicit representation to achieve real-time rendering with high-quality results. However, 3DGS still requires an abundance of training views to generate a coherent scene representation. In few shot settings, similar to NeRF, 3DGS tends to overfit to training views, causing background collapse and excessive floaters, especially as the number of training views are reduced. We propose a method to enable training coherent 3DGS-based radiance fields of 360-degree scenes from sparse training views. We integrate depth priors with generative and explicit constraints to reduce background collapse, remove floaters, and enhance consistency from unseen viewpoints. Experiments show that our method outperforms base 3DGS by 6.4% in LPIPS and by 12.2% in PSNR, and NeRF-based methods by at least 17.6% in LPIPS on the MipNeRF-360 dataset with substantially less training and inference cost.
December 2023. https://arxiv.org/abs/2312.00206
248 Bootstrap 3D Reconstructed Scenes from 3D Gaussian Splatting Yifei Gao,Jie Ou,Lei Wang,Jun Cheng
AbstractRecent developments in neural rendering techniques have greatly enhanced the rendering of photo-realistic 3D scenes across both academic and commercial fields. The latest method, known as 3D Gaussian Splatting (3D-GS), has set new benchmarks for rendering quality and speed. Nevertheless, the limitations of 3D-GS become pronounced in synthesizing new viewpoints, especially for views that greatly deviate from those seen during training. Additionally, issues such as dilation and aliasing arise when zooming in or out. These challenges can all be traced back to a single underlying issue: insufficient sampling. In our paper, we present a bootstrapping method that significantly addresses this problem. This approach employs a diffusion model to enhance the rendering of novel views using trained 3D-GS, thereby streamlining the training process. Our results indicate that bootstrapping effectively reduces artifacts, as well as clear enhancements on the evaluation metrics. Furthermore, we show that our method is versatile and can be easily integrated, allowing various 3D reconstruction projects to benefit from our approach.
April 2024. https://arxiv.org/abs/2404.18669
247 Direct Learning of Mesh and Appearance via 3D Gaussian Splatting Ancheng Lin,Jun Li
AbstractAccurately reconstructing a 3D scene including explicit geometry information is both attractive and challenging. Geometry reconstruction can benefit from incorporating differentiable appearance models, such as Neural Radiance Fields and 3D Gaussian Splatting (3DGS). In this work, we propose a learnable scene model that incorporates 3DGS with an explicit geometry representation, namely a mesh. Our model learns the mesh and appearance in an end-to-end manner, where we bind 3D Gaussians to the mesh faces and perform differentiable rendering of 3DGS to obtain photometric supervision. The model creates an effective information pathway to supervise the learning of the scene, including the mesh. Experimental results demonstrate that the learned scene model not only achieves state-of-the-art rendering quality but also supports manipulation using the explicit mesh. In addition, our model has a unique advantage in adapting to scene updates, thanks to the end-to-end learning of both mesh and appearance.
May 2024. https://arxiv.org/abs/2405.06945
246 OneTo3D: One Image to Re-editable Dynamic 3D Model and Video Generation Jinwei Lin
AbstractOne image to editable dynamic 3D model and video generation is novel direction and change in the research area of single image to 3D representation or 3D reconstruction of image. Gaussian Splatting has demonstrated its advantages in implicit 3D reconstruction, compared with the original Neural Radiance Fields. As the rapid development of technologies and principles, people tried to used the Stable Diffusion models to generate targeted models with text instructions. However, using the normal implicit machine learning methods is hard to gain the precise motions and actions control, further more, it is difficult to generate a long content and semantic continuous 3D video. To address this issue, we propose the OneTo3D, a method and theory to used one single image to generate the editable 3D model and generate the targeted semantic continuous time-unlimited 3D video. We used a normal basic Gaussian Splatting model to generate the 3D model from a single image, which requires less volume of video memory and computer calculation ability. Subsequently, we designed an automatic generation and self-adaptive binding mechanism for the object armature. Combined with the re-editable motions and actions analyzing and controlling algorithm we proposed, we can achieve a better performance than the SOTA projects in the area of building the 3D model precise motions and actions control, and generating a stable semantic continuous time-unlimited 3D video with the input text instructions. Here we will analyze the detailed implementation methods and theories analyses. Relative comparisons and conclusions will be presented. The project code is open source.
May 2024. https://arxiv.org/abs/2405.06547
245 I3DGS: Improve 3D Gaussian Splatting from Multiple Dimensions Jinwei Lin
Abstract3D Gaussian Splatting is a novel method for 3D view synthesis, which can gain an implicit neural learning rendering result than the traditional neural rendering technology but keep the more high-definition fast rendering speed. But it is still difficult to achieve a fast enough efficiency on 3D Gaussian Splatting for the practical applications. To Address this issue, we propose the I3DS, a synthetic model performance improvement evaluation solution and experiments test. From multiple and important levels or dimensions of the original 3D Gaussian Splatting, we made more than two thousand various kinds of experiments to test how the selected different items and components can make an impact on the training efficiency of the 3D Gaussian Splatting model. In this paper, we will share abundant and meaningful experiences and methods about how to improve the training, performance and the impacts caused by different items of the model. A special but normal Integer compression in base 95 and a floating-point compression in base 94 with ASCII encoding and decoding mechanism is presented. Many real and effective experiments and test results or phenomena will be recorded. After a series of reasonable fine-tuning, I3DS can gain excellent performance improvements than the previous one. The project code is available as open source.
May 2024. https://arxiv.org/abs/2405.06408
244 MGS-SLAM: Monocular Sparse Tracking and Gaussian Mapping with Depth Smooth Regularization Pengcheng Zhu,Yaoming Zhuang,Baoquan Chen,Li Li,Chengdong Wu,Zhanlin Liu
AbstractThis letter introduces a novel framework for dense Visual Simultaneous Localization and Mapping (VSLAM) based on Gaussian Splatting. Recently Gaussian Splatting-based SLAM has yielded promising results, but rely on RGB-D input and is weak in tracking. To address these limitations, we uniquely integrates advanced sparse visual odometry with a dense Gaussian Splatting scene representation for the first time, thereby eliminating the dependency on depth maps typical of Gaussian Splatting-based SLAM systems and enhancing tracking robustness. Here, the sparse visual odometry tracks camera poses in RGB stream, while Gaussian Splatting handles map reconstruction. These components are interconnected through a Multi-View Stereo (MVS) depth estimation network. And we propose a depth smooth loss to reduce the negative effect of estimated depth maps. Furthermore, the consistency in scale between the sparse visual odometry and the dense Gaussian map is preserved by Sparse-Dense Adjustment Ring (SDAR). We have evaluated our system across various synthetic and real-world datasets. The accuracy of our pose estimation surpasses existing methods and achieves state-of-the-art performance. Additionally, it outperforms previous monocular methods in terms of novel view synthesis fidelity, matching the results of neural SLAM systems that utilize RGB-D input.
May 2024. https://arxiv.org/abs/2405.06241
243 DragGaussian: Enabling Drag-style Manipulation on 3D Gaussian Representation Sitian Shen,Jing Xu,Yuheng Yuan,Xingyi Yang,Qiuhong Shen,Xinchao Wang
AbstractUser-friendly 3D object editing is a challenging task that has attracted significant attention recently. The limitations of direct 3D object editing without 2D prior knowledge have prompted increased attention towards utilizing 2D generative models for 3D editing. While existing methods like Instruct NeRF-to-NeRF offer a solution, they often lack user-friendliness, particularly due to semantic guided editing. In the realm of 3D representation, 3D Gaussian Splatting emerges as a promising approach for its efficiency and natural explicit property, facilitating precise editing tasks. Building upon these insights, we propose DragGaussian, a 3D object drag-editing framework based on 3D Gaussian Splatting, leveraging diffusion models for interactive image editing with open-vocabulary input. This framework enables users to perform drag-based editing on pre-trained 3D Gaussian object models, producing modified 2D images through multi-view consistent editing. Our contributions include the introduction of a new task, the development of DragGaussian for interactive point-based 3D editing, and comprehensive validation of its effectiveness through qualitative and quantitative experiments.
May 2024. https://arxiv.org/abs/2405.05800
242 FastScene: Text-Driven Fast 3D Indoor Scene Generation via Panoramic Gaussian Splatting Yikun Ma,Dandan Zhan,Zhi Jin
AbstractText-driven 3D indoor scene generation holds broad applications, ranging from gaming and smart homes to AR/VR applications. Fast and high-fidelity scene generation is paramount for ensuring user-friendly experiences. However, existing methods are characterized by lengthy generation processes or necessitate the intricate manual specification of motion parameters, which introduces inconvenience for users. Furthermore, these methods often rely on narrow-field viewpoint iterative generations, compromising global consistency and overall scene quality. To address these issues, we propose FastScene, a framework for fast and higher-quality 3D scene generation, while maintaining the scene consistency. Specifically, given a text prompt, we generate a panorama and estimate its depth, since the panorama encompasses information about the entire scene and exhibits explicit geometric constraints. To obtain high-quality novel views, we introduce the Coarse View Synthesis (CVS) and Progressive Novel View Inpainting (PNVI) strategies, ensuring both scene consistency and view quality. Subsequently, we utilize Multi-View Projection (MVP) to form perspective views, and apply 3D Gaussian Splatting (3DGS) for scene reconstruction. Comprehensive experiments demonstrate FastScene surpasses other methods in both generation speed and quality with better scene consistency. Notably, guided only by a text prompt, FastScene can generate a 3D scene within a mere 15 minutes, which is at least one hour faster than state-of-the-art methods, making it a paradigm for user-friendly scene generation.
May 2024. https://arxiv.org/abs/2405.05768
241 NGM-SLAM: Gaussian Splatting SLAM with Radiance Field Submap Mingrui Li,Jingwei Huang,Lei Sun,Aaron Xuxiang Tian,Tianchen Deng,Hongyu Wang
AbstractGaussian Splatting has garnered widespread attention due to its exceptional performance. Consequently, SLAM systems based on Gaussian Splatting have emerged, leveraging its capabilities for rapid real-time rendering and high-fidelity mapping. However, current Gaussian Splatting SLAM systems usually struggle with large scene representation and lack effective loop closure adjustments and scene generalization capabilities. To address these issues, we introduce NGM-SLAM, the first GS-SLAM system that utilizes neural radiance field submaps for progressive scene expression, effectively integrating the strengths of neural radiance fields and 3D Gaussian Splatting. We have developed neural implicit submaps as supervision and achieve high-quality scene expression and online loop closure adjustments through Gaussian rendering of fused submaps. Our results on multiple real-world scenes and large-scale scene datasets demonstrate that our method can achieve accurate gap filling and high-quality scene expression, supporting both monocular, stereo, and RGB-D inputs, and achieving state-of-the-art scene reconstruction and tracking performance.
May 2024. https://arxiv.org/abs/2405.05702
240 Benchmarking Neural Radiance Fields for Autonomous Robots: An Overview Yuhang Ming,Xingrui Yang,Weihan Wang,Zheng Chen,Jinglun Feng,Yifan Xing,Guofeng Zhang
AbstractNeural Radiance Fields (NeRF) have emerged as a powerful paradigm for 3D scene representation, offering high-fidelity renderings and reconstructions from a set of sparse and unstructured sensor data. In the context of autonomous robotics, where perception and understanding of the environment are pivotal, NeRF holds immense promise for improving performance. In this paper, we present a comprehensive survey and analysis of the state-of-the-art techniques for utilizing NeRF to enhance the capabilities of autonomous robots. We especially focus on the perception, localization and navigation, and decision-making modules of autonomous robots and delve into tasks crucial for autonomous operation, including 3D reconstruction, segmentation, pose estimation, simultaneous localization and mapping (SLAM), navigation and planning, and interaction. Our survey meticulously benchmarks existing NeRF-based methods, providing insights into their strengths and limitations. Moreover, we explore promising avenues for future research and development in this domain. Notably, we discuss the integration of advanced techniques such as 3D Gaussian splatting (3DGS), large language models (LLM), and generative AIs, envisioning enhanced reconstruction efficiency, scene understanding, decision-making capabilities. This survey serves as a roadmap for researchers seeking to leverage NeRFs to empower autonomous robots, paving the way for innovative solutions that can navigate and interact seamlessly in complex environments.
May 2024. https://arxiv.org/abs/2405.05526
239 RTG-SLAM: Real-time 3D Reconstruction at Scale using Gaussian Splatting Zhexi Peng,Tianjia Shao,Yong Liu,Jingke Zhou,Yin Yang,Jingdong Wang,Kun Zhou
AbstractWe present Real-time Gaussian SLAM (RTG-SLAM), a real-time 3D reconstruction system with an RGBD camera for large-scale environments using Gaussian splatting. The system features a compact Gaussian representation and a highly efficient on-the-fly Gaussian optimization scheme. We force each Gaussian to be either opaque or nearly transparent, with the opaque ones fitting the surface and dominant colors, and transparent ones fitting residual colors. By rendering depth in a different way from color rendering, we let a single opaque Gaussian well fit a local surface region without the need of multiple overlapping Gaussians, hence largely reducing the memory and computation cost. For on-the-fly Gaussian optimization, we explicitly add Gaussians for three types of pixels per frame: newly observed, with large color errors, and with large depth errors. We also categorize all Gaussians into stable and unstable ones, where the stable Gaussians are expected to well fit previously observed RGBD images and otherwise unstable. We only optimize the unstable Gaussians and only render the pixels occupied by unstable Gaussians. In this way, both the number of Gaussians to be optimized and pixels to be rendered are largely reduced, and the optimization can be done in real time. We show real-time reconstructions of a variety of large scenes. Compared with the state-of-the-art NeRF-based RGBD SLAM, our system achieves comparable high-quality reconstruction but with around twice the speed and half the memory cost, and shows superior performance in the realism of novel view synthesis and camera tracking accuracy.
April 2024. https://arxiv.org/abs/2404.19706
238 GDGS: Gradient Domain Gaussian Splatting for Sparse Representation of Radiance Fields Yuanhao Gong
AbstractThe 3D Gaussian splatting methods are getting popular. However, they work directly on the signal, leading to a dense representation of the signal. Even with some techniques such as pruning or distillation, the results are still dense. In this paper, we propose to model the gradient of the original signal. The gradients are much sparser than the original signal. Therefore, the gradients use much less Gaussian splats, leading to the more efficient storage and thus higher computational performance during both training and rendering. Thanks to the sparsity, during the view synthesis, only a small mount of pixels are needed, leading to much higher computational performance ($100\sim 1000\times$ faster). And the 2D image can be recovered from the gradients via solving a Poisson equation with linear computation complexity. Several experiments are performed to confirm the sparseness of the gradients and the computation performance of the proposed method. The method can be applied various applications, such as human body modeling and indoor environment modeling.
May 2024. https://arxiv.org/abs/2405.05446
237 A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose Kaiwen Jiang,Yang Fu,Mukund Varma T,Yash Belhe,Xiaolong Wang,Hao Su,Ravi Ramamoorthi
AbstractNovel view synthesis from a sparse set of input images is a challenging problem of great practical interest, especially when camera poses are absent or inaccurate. Direct optimization of camera poses and usage of estimated depths in neural radiance field algorithms usually do not produce good results because of the coupling between poses and depths, and inaccuracies in monocular depth estimation. In this paper, we leverage the recent 3D Gaussian splatting method to develop a novel construct-and-optimize method for sparse view synthesis without camera poses. Specifically, we construct a solution progressively by using monocular depth and projecting pixels back into the 3D world. During construction, we optimize the solution by detecting 2D correspondences between training views and the corresponding rendered images. We develop a unified differentiable pipeline for camera registration and adjustment of both camera poses and depths, followed by back-projection. We also introduce a novel notion of an expected surface in Gaussian splatting, which is critical to our optimization. These steps enable a coarse solution, which can then be low-pass filtered and refined using standard optimization methods. We demonstrate results on the Tanks and Temples and Static Hikes datasets with as few as three widely-spaced views, showing significantly better quality than competing methods, including those with approximate camera pose information. Moreover, our results improve with more views and outperform previous InstantNGP and Gaussian Splatting algorithms even when using half the dataset.
May 2024. https://arxiv.org/abs/2405.03659
236 Gaussian Splatting: 3D Reconstruction and Novel View Synthesis, a Review Anurag Dalal,Daniel Hagen,Kjell G. Robbersmyr,Kristian Muri Knausg\xc3\xa5rd
AbstractImage-based 3D reconstruction is a challenging task that involves inferring the 3D shape of an object or scene from a set of input images. Learning-based methods have gained attention for their ability to directly estimate 3D shapes. This review paper focuses on state-of-the-art techniques for 3D reconstruction, including the generation of novel, unseen views. An overview of recent developments in the Gaussian Splatting method is provided, covering input types, model structures, output representations, and training strategies. Unresolved challenges and future directions are also discussed. Given the rapid progress in this domain and the numerous opportunities for enhancing 3D reconstruction methods, a comprehensive examination of algorithms appears essential. Consequently, this study offers a thorough overview of the latest advancements in Gaussian Splatting.
May 2024. https://arxiv.org/abs/2405.03417
235 VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality Ying Jiang,Chang Yu,Tianyi Xie,Xuan Li,Yutao Feng,Huamin Wang,Minchen Li,Henry Lau,Feng Gao,Yin Yang,Chenfanfu Jiang
AbstractAs consumer Virtual Reality (VR) and Mixed Reality (MR) technologies gain momentum, there's a growing focus on the development of engagements with 3D virtual content. Unfortunately, traditional techniques for content creation, editing, and interaction within these virtual spaces are fraught with difficulties. They tend to be not only engineering-intensive but also require extensive expertise, which adds to the frustration and inefficiency in virtual object manipulation. Our proposed VR-GS system represents a leap forward in human-centered 3D content interaction, offering a seamless and intuitive user experience. By developing a physical dynamics-aware interactive Gaussian Splatting in a Virtual Reality setting, and constructing a highly efficient two-level embedding strategy alongside deformable body simulations, VR-GS ensures real-time execution with highly realistic dynamic responses. The components of our Virtual Reality system are designed for high efficiency and effectiveness, starting from detailed scene reconstruction and object segmentation, advancing through multi-view image in-painting, and extending to interactive physics-based editing. The system also incorporates real-time deformation embedding and dynamic shadow casting, ensuring a comprehensive and engaging virtual experience.Our project page is available at: https://yingjiang96.github.io/VR-GS/.
January 2024. https://arxiv.org/abs/2401.16663
234 FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding Xingxing Zuo,Pouya Samangouei,Yunwen Zhou,Yan Di,Mingyang Li
AbstractPrecisely perceiving the geometric and semantic properties of real-world 3D objects is crucial for the continued evolution of augmented reality and robotic applications. To this end, we present Foundation Model Embedded Gaussian Splatting (FMGS), which incorporates vision-language embeddings of foundation models into 3D Gaussian Splatting (GS). The key contribution of this work is an efficient method to reconstruct and represent 3D vision-language models. This is achieved by distilling feature maps generated from image-based foundation models into those rendered from our 3D model. To ensure high-quality rendering and fast training, we introduce a novel scene representation by integrating strengths from both GS and multi-resolution hash encodings (MHE). Our effective training procedure also introduces a pixel alignment loss that makes the rendered feature distance of the same semantic entities close, following the pixel-level semantic boundaries. Our results demonstrate remarkable multi-view semantic consistency, facilitating diverse downstream tasks, beating state-of-the-art methods by 10.2 percent on open-vocabulary language-based object detection, despite that we are 851X faster for inference. This research explores the intersection of vision, language, and 3D scene representation, paving the way for enhanced scene understanding in uncontrolled real-world environments. We plan to release the code on the project page.
January 2024. https://arxiv.org/abs/2401.01970
233 HoloGS: Instant Depth-based 3D Gaussian Splatting with Microsoft HoloLens 2 Miriam J\xc3\xa4ger,Theodor Kapler,Michael Fe\xc3\x9fenbecker,Felix Birkelbach,Markus Hillemann,Boris Jutzi
AbstractIn the fields of photogrammetry, computer vision and computer graphics, the task of neural 3D scene reconstruction has led to the exploration of various techniques. Among these, 3D Gaussian Splatting stands out for its explicit representation of scenes using 3D Gaussians, making it appealing for tasks like 3D point cloud extraction and surface reconstruction. Motivated by its potential, we address the domain of 3D scene reconstruction, aiming to leverage the capabilities of the Microsoft HoloLens 2 for instant 3D Gaussian Splatting. We present HoloGS, a novel workflow utilizing HoloLens sensor data, which bypasses the need for pre-processing steps like Structure from Motion by instantly accessing the required input data i.e. the images, camera poses and the point cloud from depth sensing. We provide comprehensive investigations, including the training process and the rendering quality, assessed through the Peak Signal-to-Noise Ratio, and the geometric 3D accuracy of the densified point cloud from Gaussian centers, measured by Chamfer Distance. We evaluate our approach on two self-captured scenes: An outdoor scene of a cultural heritage statue and an indoor scene of a fine-structured plant. Our results show that the HoloLens data, including RGB images, corresponding camera poses, and depth sensing based point clouds to initialize the Gaussians, are suitable as input for 3D Gaussian Splatting.
May 2024. https://arxiv.org/abs/2405.02005
232 Compact 3D Scene Representation via Self-Organizing Gaussian Grids Wieland Morgenstern,Florian Barthel,Anna Hilsmann,Peter Eisert
Abstract3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes. In contrast to Neural Radiance Fields, it utilizes efficient rasterization allowing for very fast rendering at high-quality. However, the storage size is significantly higher, which hinders practical deployment, e.g. on resource constrained devices. In this paper, we introduce a compact scene representation organizing the parameters of 3D Gaussian Splatting (3DGS) into a 2D grid with local homogeneity, ensuring a drastic reduction in storage requirements without compromising visual quality during rendering. Central to our idea is the explicit exploitation of perceptual redundancies present in natural scenes. In essence, the inherent nature of a scene allows for numerous permutations of Gaussian parameters to equivalently represent it. To this end, we propose a novel highly parallel algorithm that regularly arranges the high-dimensional Gaussian parameters into a 2D grid while preserving their neighborhood structure. During training, we further enforce local smoothness between the sorted parameters in the grid. The uncompressed Gaussians use the same structure as 3DGS, ensuring a seamless integration with established renderers. Our method achieves a reduction factor of 17x to 42x in size for complex scenes with no increase in training time, marking a substantial leap forward in the domain of 3D scene distribution and consumption. Additional information can be found on our project page: https://fraunhoferhhi.github.io/Self-Organizing-Gaussians/
December 2023. https://arxiv.org/abs/2312.13299
231 3D Gaussian Blendshapes for Head Avatar Animation Shengjie Ma,Yanlin Weng,Tianjia Shao,Kun Zhou
AbstractWe introduce 3D Gaussian blendshapes for modeling photorealistic head avatars. Taking a monocular video as input, we learn a base head model of neutral expression, along with a group of expression blendshapes, each of which corresponds to a basis expression in classical parametric face models. Both the neutral model and expression blendshapes are represented as 3D Gaussians, which contain a few properties to depict the avatar appearance. The avatar model of an arbitrary expression can be effectively generated by combining the neutral model and expression blendshapes through linear blending of Gaussians with the expression coefficients. High-fidelity head avatar animations can be synthesized in real time using Gaussian splatting. Compared to state-of-the-art methods, our Gaussian blendshape representation better captures high-frequency details exhibited in input video, and achieves superior rendering performance.
April 2024. https://arxiv.org/abs/2404.19398
230 Spectrally Pruned Gaussian Fields with Neural Compensation Runyi Yang,Zhenxin Zhu,Zhou Jiang,Baijun Ye,Xiaoxue Chen,Yifei Zhang,Yuantao Chen,Jian Zhao,Hao Zhao
AbstractRecently, 3D Gaussian Splatting, as a novel 3D representation, has garnered attention for its fast rendering speed and high rendering quality. However, this comes with high memory consumption, e.g., a well-trained Gaussian field may utilize three million Gaussian primitives and over 700 MB of memory. We credit this high memory footprint to the lack of consideration for the relationship between primitives. In this paper, we propose a memory-efficient Gaussian field named SUNDAE with spectral pruning and neural compensation. On one hand, we construct a graph on the set of Gaussian primitives to model their relationship and design a spectral down-sampling module to prune out primitives while preserving desired signals. On the other hand, to compensate for the quality loss of pruning Gaussians, we exploit a lightweight neural network head to mix splatted features, which effectively compensates for quality losses while capturing the relationship between primitives in its weights. We demonstrate the performance of SUNDAE with extensive results. For example, SUNDAE can achieve 26.80 PSNR at 145 FPS using 104 MB memory while the vanilla Gaussian splatting algorithm achieves 25.60 PSNR at 160 FPS using 523 MB memory, on the Mip-NeRF360 dataset. Codes are publicly available at https://runyiyang.github.io/projects/SUNDAE/.
May 2024. https://arxiv.org/abs/2405.00676
229 GS-LRM: Large Reconstruction Model for 3D Gaussian Splatting Kai Zhang,Sai Bi,Hao Tan,Yuanbo Xiangli,Nanxuan Zhao,Kalyan Sunkavalli,Zexiang Xu
AbstractWe propose GS-LRM, a scalable large reconstruction model that can predict high-quality 3D Gaussian primitives from 2-4 posed sparse images in 0.23 seconds on single A100 GPU. Our model features a very simple transformer-based architecture; we patchify input posed images, pass the concatenated multi-view image tokens through a sequence of transformer blocks, and decode final per-pixel Gaussian parameters directly from these tokens for differentiable rendering. In contrast to previous LRMs that can only reconstruct objects, by predicting per-pixel Gaussians, GS-LRM naturally handles scenes with large variations in scale and complexity. We show that our model can work on both object and scene captures by training it on Objaverse and RealEstate10K respectively. In both scenarios, the models outperform state-of-the-art baselines by a wide margin. We also demonstrate applications of our model in downstream 3D generation tasks. Our project webpage is available at: https://sai-bi.github.io/project/gs-lrm/ .
April 2024. https://arxiv.org/abs/2404.19702
228 SAGS: Structure-Aware 3D Gaussian Splatting Evangelos Ververas,Rolandos Alexandros Potamias,Jifei Song,Jiankang Deng,Stefanos Zafeiriou
AbstractFollowing the advent of NeRFs, 3D Gaussian Splatting (3D-GS) has paved the way to real-time neural rendering overcoming the computational burden of volumetric methods. Following the pioneering work of 3D-GS, several methods have attempted to achieve compressible and high-fidelity performance alternatives. However, by employing a geometry-agnostic optimization scheme, these methods neglect the inherent 3D structure of the scene, thereby restricting the expressivity and the quality of the representation, resulting in various floating points and artifacts. In this work, we propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene, which reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets. SAGS is founded on a local-global graph representation that facilitates the learning of complex scenes and enforces meaningful point displacements that preserve the scene's geometry. Additionally, we introduce a lightweight version of SAGS, using a simple yet effective mid-point interpolation scheme, which showcases a compact representation of the scene with up to 24$\times$ size reduction without the reliance on any compression strategies. Extensive experiments across multiple benchmark datasets demonstrate the superiority of SAGS compared to state-of-the-art 3D-GS methods under both rendering quality and model size. Besides, we demonstrate that our structure-aware method can effectively mitigate floating artifacts and irregular distortions of previous methods while obtaining precise depth maps. Project page https://eververas.github.io/SAGS/.
April 2024. https://arxiv.org/abs/2404.19149
227 GSTalker: Real-time Audio-Driven Talking Face Generation via Deformable Gaussian Splatting Bo Chen,Shoukang Hu,Qi Chen,Chenpeng Du,Ran Yi,Yanmin Qian,Xie Chen
AbstractWe present GStalker, a 3D audio-driven talking face generation model with Gaussian Splatting for both fast training (40 minutes) and real-time rendering (125 FPS) with a 3$\sim$5 minute video for training material, in comparison with previous 2D and 3D NeRF-based modeling frameworks which require hours of training and seconds of rendering per frame. Specifically, GSTalker learns an audio-driven Gaussian deformation field to translate and transform 3D Gaussians to synchronize with audio information, in which multi-resolution hashing grid-based tri-plane and temporal smooth module are incorporated to learn accurate deformation for fine-grained facial details. In addition, a pose-conditioned deformation field is designed to model the stabilized torso. To enable efficient optimization of the condition Gaussian deformation field, we initialize 3D Gaussians by learning a coarse static Gaussian representation. Extensive experiments in person-specific videos with audio tracks validate that GSTalker can generate high-fidelity and audio-lips synchronized results with fast training and real-time rendering speed.
April 2024. https://arxiv.org/abs/2404.19040
226 MeGA: Hybrid Mesh-Gaussian Head Avatar for High-Fidelity Rendering and Head Editing Cong Wang,Di Kang,He-Yi Sun,Shen-Han Qian,Zi-Xuan Wang,Linchao Bao,Song-Hai Zhang
AbstractCreating high-fidelity head avatars from multi-view videos is a core issue for many AR/VR applications. However, existing methods usually struggle to obtain high-quality renderings for all different head components simultaneously since they use one single representation to model components with drastically different characteristics (e.g., skin vs. hair). In this paper, we propose a Hybrid Mesh-Gaussian Head Avatar (MeGA) that models different head components with more suitable representations. Specifically, we select an enhanced FLAME mesh as our facial representation and predict a UV displacement map to provide per-vertex offsets for improved personalized geometric details. To achieve photorealistic renderings, we obtain facial colors using deferred neural rendering and disentangle neural textures into three meaningful parts. For hair modeling, we first build a static canonical hair using 3D Gaussian Splatting. A rigid transformation and an MLP-based deformation field are further applied to handle complex dynamic expressions. Combined with our occlusion-aware blending, MeGA generates higher-fidelity renderings for the whole head and naturally supports more downstream tasks. Experiments on the NeRSemble dataset demonstrate the effectiveness of our designs, outperforming previous state-of-the-art methods and supporting various editing functionalities, including hairstyle alteration and texture editing.
April 2024. https://arxiv.org/abs/2404.19026
225 DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing Minghao Chen,Iro Laina,Andrea Vedaldi
AbstractWe consider the problem of editing 3D objects and scenes based on open-ended language instructions. The established paradigm to solve this problem is to use a 2D image generator or editor to guide the 3D editing process. However, this is often slow as it requires do update a computationally expensive 3D representations such as a neural radiance field, and to do so by using contradictory guidance from a 2D model which is inherently not multi-view consistent. We thus introduce the Direct Gaussian Editor (DGE), a method that addresses these issues in two ways. First, we modify a given high-quality image editor like InstructPix2Pix to be multi-view consistent. We do so by utilizing a training-free approach which integrates cues from the underlying 3D geometry of the scene. Second, given a multi-view consistent edited sequence of images of the object, we directly and efficiently optimize the 3D object representation, which is based on 3D Gaussian Splatting. Because it does not require to apply edits incrementally and iteratively, DGE is significantly more efficient than existing approaches, and comes with other perks such as allowing selective editing of parts of the scene.
April 2024. https://arxiv.org/abs/2404.18929
224 3D Gaussian Splatting with Deferred Reflection Keyang Ye,Qiming Hou,Kun Zhou
AbstractThe advent of neural and Gaussian-based radiance field methods have achieved great success in the field of novel view synthesis. However, specular reflection remains non-trivial, as the high frequency radiance field is notoriously difficult to fit stably and accurately. We present a deferred shading method to effectively render specular reflection with Gaussian splatting. The key challenge comes from the environment map reflection model, which requires accurate surface normal while simultaneously bottlenecks normal estimation with discontinuous gradients. We leverage the per-pixel reflection gradients generated by deferred shading to bridge the optimization process of neighboring Gaussians, allowing nearly correct normal estimations to gradually propagate and eventually spread over all reflective objects. Our method significantly outperforms state-of-the-art techniques and concurrent work in synthesizing high-quality specular reflection effects, demonstrating a consistent improvement of peak signal-to-noise ratio (PSNR) for both synthetic and real-world scenes, while running at a frame rate almost identical to vanilla Gaussian splatting.
April 2024. https://arxiv.org/abs/2404.18454
223 Reconstructing Satellites in 3D from Amateur Telescope Images Zhiming Chang,Boyang Liu,Yifei Xia,Youming Guo,Boxin Shi,He Sun
AbstractThis paper proposes a framework for the 3D reconstruction of satellites in low-Earth orbit, utilizing videos captured by small amateur telescopes. The video data obtained from these telescopes differ significantly from data for standard 3D reconstruction tasks, characterized by intense motion blur, atmospheric turbulence, pervasive background light pollution, extended focal length and constrained observational perspectives. To address these challenges, our approach begins with a comprehensive pre-processing workflow that encompasses deep learning-based image restoration, feature point extraction and camera pose initialization. We proceed with the application of an improved 3D Gaussian splatting algorithm for reconstructing the 3D model. Our technique supports simultaneous 3D Gaussian training and pose estimation, enabling the robust generation of intricate 3D point clouds from sparse, noisy data. The procedure is further bolstered by a post-editing phase designed to eliminate noise points inconsistent with our prior knowledge of a satellite's geometric constraints. We validate our approach using both synthetic datasets and actual observations of China's Space Station, showcasing its significant advantages over existing methods in reconstructing 3D space objects from ground-based observations.
April 2024. https://arxiv.org/abs/2404.18394
222 GaussianTalker: Speaker-specific Talking Head Synthesis via 3D Gaussian Splatting Hongyun Yu,Zhan Qu,Qihang Yu,Jianchuan Chen,Zhonghua Jiang,Zhiwen Chen,Shengyu Zhang,Jimin Xu,Fei Wu,Chengfei Lv,Gang Yu
AbstractRecent works on audio-driven talking head synthesis using Neural Radiance Fields (NeRF) have achieved impressive results. However, due to inadequate pose and expression control caused by NeRF implicit representation, these methods still have some limitations, such as unsynchronized or unnatural lip movements, and visual jitter and artifacts. In this paper, we propose GaussianTalker, a novel method for audio-driven talking head synthesis based on 3D Gaussian Splatting. With the explicit representation property of 3D Gaussians, intuitive control of the facial motion is achieved by binding Gaussians to 3D facial models. GaussianTalker consists of two modules, Speaker-specific Motion Translator and Dynamic Gaussian Renderer. Speaker-specific Motion Translator achieves accurate lip movements specific to the target speaker through universalized audio feature extraction and customized lip motion generation. Dynamic Gaussian Renderer introduces Speaker-specific BlendShapes to enhance facial detail representation via a latent pose, delivering stable and realistic rendered videos. Extensive experimental results suggest that GaussianTalker outperforms existing state-of-the-art methods in talking head synthesis, delivering precise lip synchronization and exceptional visual quality. Our method achieves rendering speeds of 130 FPS on NVIDIA RTX4090 GPU, significantly exceeding the threshold for real-time rendering performance, and can potentially be deployed on other hardware platforms.
April 2024. https://arxiv.org/abs/2404.14037
221 Splat-Nav: Safe Real-Time Robot Navigation in Gaussian Splatting Maps Timothy Chen,Ola Shorinwa,Joseph Bruno,Javier Yu,Weijia Zeng,Keiko Nagami,Philip Dames,Mac Schwager
AbstractWe present Splat-Nav, a real-time navigation pipeline designed to work with environment representations generated by Gaussian Splatting (GSplat), a popular emerging 3D scene representation from computer vision. Splat-Nav consists of two components: 1) Splat-Plan, a safe planning module, and 2) Splat-Loc, a robust pose estimation module. Splat-Plan builds a safe-by-construction polytope corridor through the map based on mathematically rigorous collision constraints and then constructs a B\xc3\xa9zier curve trajectory through this corridor. Splat-Loc provides a robust state estimation module, leveraging the point-cloud representation inherent in GSplat scenes for global pose initialization, in the absence of prior knowledge, and recursive real-time pose localization, given only RGB images. The most compute-intensive procedures in our navigation pipeline, such as the computation of the B\xc3\xa9zier trajectories and the pose optimization problem run primarily on the CPU, freeing up GPU resources for GPU-intensive tasks, such as online training of Gaussian Splats. We demonstrate the safety and robustness of our pipeline in both simulation and hardware experiments, where we show online re-planning at 5 Hz and pose estimation at about 25 Hz, an order of magnitude faster than Neural Radiance Field (NeRF)-based navigation methods, thereby enabling real-time navigation.
March 2024. https://arxiv.org/abs/2403.02751
220 SLAM for Indoor Mapping of Wide Area Construction Environments Vincent Ress,Wei Zhang,David Skuddis,Norbert Haala,Uwe Soergel
AbstractSimultaneous localization and mapping (SLAM), i.e., the reconstruction of the environment represented by a (3D) map and the concurrent pose estimation, has made astonishing progress. Meanwhile, large scale applications aiming at the data collection in complex environments like factory halls or construction sites are becoming feasible. However, in contrast to small scale scenarios with building interiors separated to single rooms, shop floors or construction areas require measures at larger distances in potentially texture less areas under difficult illumination. Pose estimation is further aggravated since no GNSS measures are available as it is usual for such indoor applications. In our work, we realize data collection in a large factory hall by a robot system equipped with four stereo cameras as well as a 3D laser scanner. We apply our state-of-the-art LiDAR and visual SLAM approaches and discuss the respective pros and cons of the different sensor types for trajectory estimation and dense map generation in such an environment. Additionally, dense and accurate depth maps are generated by 3D Gaussian splatting, which we plan to use in the context of our project aiming on the automatic construction and site monitoring.
April 2024. https://arxiv.org/abs/2404.17215
219 GaussCtrl: Multi-View Consistent Text-Driven 3D Gaussian Splatting Editing Jing Wu,Jia-Wang Bian,Xinghui Li,Guangrun Wang,Ian Reid,Philip Torr,Victor Adrian Prisacariu
AbstractWe propose GaussCtrl, a text-driven method to edit a 3D scene reconstructed by the 3D Gaussian Splatting (3DGS). Our method first renders a collection of images by using the 3DGS and edits them by using a pre-trained 2D diffusion model (ControlNet) based on the input prompt, which is then used to optimise the 3D model. Our key contribution is multi-view consistent editing, which enables editing all images together instead of iteratively editing one image while updating the 3D model as in previous works. It leads to faster editing as well as higher visual quality. This is achieved by the two terms: (a) depth-conditioned editing that enforces geometric consistency across multi-view images by leveraging naturally consistent depth maps. (b) attention-based latent code alignment that unifies the appearance of edited images by conditioning their editing to several reference views through self and cross-view attention between images' latent representations. Experiments demonstrate that our method achieves faster editing and better visual results than previous state-of-the-art methods.
March 2024. https://arxiv.org/abs/2403.08733
218 OMEGAS: Object Mesh Extraction from Large Scenes Guided by Gaussian Segmentation Lizhi Wang,Feng Zhou,Jianqin Yin
AbstractRecent advancements in 3D reconstruction technologies have paved the way for high-quality and real-time rendering of complex 3D scenes. Despite these achievements, a notable challenge persists: it is difficult to precisely reconstruct specific objects from large scenes. Current scene reconstruction techniques frequently result in the loss of object detail textures and are unable to reconstruct object portions that are occluded or unseen in views. To address this challenge, we delve into the meticulous 3D reconstruction of specific objects within large scenes and propose a framework termed OMEGAS: Object Mesh Extraction from Large Scenes Guided by GAussian Segmentation. OMEGAS employs a multi-step approach, grounded in several excellent off-the-shelf methodologies. Specifically, initially, we utilize the Segment Anything Model (SAM) to guide the segmentation of 3D Gaussian Splatting (3DGS), thereby creating a basic 3DGS model of the target object. Then, we leverage large-scale diffusion priors to further refine the details of the 3DGS model, especially aimed at addressing invisible or occluded object portions from the original scene views. Subsequently, by re-rendering the 3DGS model onto the scene views, we achieve accurate object segmentation and effectively remove the background. Finally, these target-only images are used to improve the 3DGS model further and extract the definitive 3D object mesh by the SuGaR model. In various scenarios, our experiments demonstrate that OMEGAS significantly surpasses existing scene reconstruction methods. Our project page is at: https://github.com/CrystalWlz/OMEGAS
April 2024. https://arxiv.org/abs/2404.15891
217 Interactive3D: Create What You Want by Interactive 3D Generation Shaocong Dong,Lihe Ding,Zhanpeng Huang,Zibin Wang,Tianfan Xue,Dan Xu
Abstract3D object generation has undergone significant advancements, yielding high-quality results. However, fall short of achieving precise user control, often yielding results that do not align with user expectations, thus limiting their applicability. User-envisioning 3D object generation faces significant challenges in realizing its concepts using current generative models due to limited interaction capabilities. Existing methods mainly offer two approaches: (i) interpreting textual instructions with constrained controllability, or (ii) reconstructing 3D objects from 2D images. Both of them limit customization to the confines of the 2D reference and potentially introduce undesirable artifacts during the 3D lifting process, restricting the scope for direct and versatile 3D modifications. In this work, we introduce Interactive3D, an innovative framework for interactive 3D generation that grants users precise control over the generative process through extensive 3D interaction capabilities. Interactive3D is constructed in two cascading stages, utilizing distinct 3D representations. The first stage employs Gaussian Splatting for direct user interaction, allowing modifications and guidance of the generative direction at any intermediate step through (i) Adding and Removing components, (ii) Deformable and Rigid Dragging, (iii) Geometric Transformations, and (iv) Semantic Editing. Subsequently, the Gaussian splats are transformed into InstantNGP. We introduce a novel (v) Interactive Hash Refinement module to further add details and extract the geometry in the second stage. Our experiments demonstrate that Interactive3D markedly improves the controllability and quality of 3D generation. Our project webpage is available at \url{https://interactive-3d.github.io/}.
April 2024. https://arxiv.org/abs/2404.16510
216 GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis with Audio-Driven 3D Gaussian Splatting Kyusun Cho,Joungbin Lee,Heeji Yoon,Yeobin Hong,Jaehoon Ko,Sangjun Ahn,Seungryong Kim
AbstractWe propose GaussianTalker, a novel framework for real-time generation of pose-controllable talking heads. It leverages the fast rendering capabilities of 3D Gaussian Splatting (3DGS) while addressing the challenges of directly controlling 3DGS with speech audio. GaussianTalker constructs a canonical 3DGS representation of the head and deforms it in sync with the audio. A key insight is to encode the 3D Gaussian attributes into a shared implicit feature representation, where it is merged with audio features to manipulate each Gaussian attribute. This design exploits the spatial-aware features and enforces interactions between neighboring points. The feature embeddings are then fed to a spatial-audio attention module, which predicts frame-wise offsets for the attributes of each Gaussian. It is more stable than previous concatenation or multiplication approaches for manipulating the numerous Gaussians and their intricate parameters. Experimental results showcase GaussianTalker's superiority in facial fidelity, lip synchronization accuracy, and rendering speed compared to previous methods. Specifically, GaussianTalker achieves a remarkable rendering speed up to 120 FPS, surpassing previous benchmarks. Our code is made available at https://github.com/KU-CVLAB/GaussianTalker/ .
April 2024. https://arxiv.org/abs/2404.16012
215 TIP-Editor: An Accurate 3D Editor Following Both Text-Prompts And Image-Prompts Jingyu Zhuang,Di Kang,Yan-Pei Cao,Guanbin Li,Liang Lin,Ying Shan
AbstractText-driven 3D scene editing has gained significant attention owing to its convenience and user-friendliness. However, existing methods still lack accurate control of the specified appearance and location of the editing result due to the inherent limitations of the text description. To this end, we propose a 3D scene editing framework, TIPEditor, that accepts both text and image prompts and a 3D bounding box to specify the editing region. With the image prompt, users can conveniently specify the detailed appearance/style of the target content in complement to the text description, enabling accurate control of the appearance. Specifically, TIP-Editor employs a stepwise 2D personalization strategy to better learn the representation of the existing scene and the reference image, in which a localization loss is proposed to encourage correct object placement as specified by the bounding box. Additionally, TIPEditor utilizes explicit and flexible 3D Gaussian splatting as the 3D representation to facilitate local editing while keeping the background unchanged. Extensive experiments have demonstrated that TIP-Editor conducts accurate editing following the text and image prompts in the specified bounding box region, consistently outperforming the baselines in editing quality, and the alignment to the prompts, qualitatively and quantitatively.
January 2024. https://arxiv.org/abs/2401.14828
214 DIG3D: Marrying Gaussian Splatting with Deformable Transformer for Single Image 3D Reconstruction Jiamin Wu,Kenkun Liu,Han Gao,Xiaoke Jiang,Lei Zhang
AbstractIn this paper, we study the problem of 3D reconstruction from a single-view RGB image and propose a novel approach called DIG3D for 3D object reconstruction and novel view synthesis. Our method utilizes an encoder-decoder framework which generates 3D Gaussians in decoder with the guidance of depth-aware image features from encoder. In particular, we introduce the use of deformable transformer, allowing efficient and effective decoding through 3D reference point and multi-layer refinement adaptations. By harnessing the benefits of 3D Gaussians, our approach offers an efficient and accurate solution for 3D reconstruction from single-view images. We evaluate our method on the ShapeNet SRN dataset, getting PSNR of 24.21 and 24.98 in car and chair dataset, respectively. The result outperforming the recent method by around 2.25%, demonstrating the effectiveness of our method in achieving superior results.
April 2024. https://arxiv.org/abs/2404.16323
213 EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS Sharath Girish,Kamal Gupta,Abhinav Shrivastava
AbstractRecently, 3D Gaussian splatting (3D-GS) has gained popularity in novel-view scene synthesis. It addresses the challenges of lengthy training times and slow rendering speeds associated with Neural Radiance Fields (NeRFs). Through rapid, differentiable rasterization of 3D Gaussians, 3D-GS achieves real-time rendering and accelerated training. They, however, demand substantial memory resources for both training and storage, as they require millions of Gaussians in their point cloud representation for each scene. We present a technique utilizing quantized embeddings to significantly reduce per-point memory storage requirements and a coarse-to-fine training strategy for a faster and more stable optimization of the Gaussian point clouds. Our approach develops a pruning stage which results in scene representations with fewer Gaussians, leading to faster training times and rendering speeds for real-time rendering of high resolution scenes. We reduce storage memory by more than an order of magnitude all while preserving the reconstruction quality. We validate the effectiveness of our approach on a variety of datasets and scenes preserving the visual quality while consuming 10-20x lesser memory and faster training/inference speed. Project page and code is available https://efficientgaussian.github.io
December 2023. https://arxiv.org/abs/2312.04564
212 Few-shot point cloud reconstruction and denoising via learned Guassian splats renderings and fine-tuned diffusion features Pietro Bonazzi,Marie-Julie Rakatosaona,Marco Cannici,Federico Tombari,Davide Scaramuzza
AbstractExisting deep learning methods for the reconstruction and denoising of point clouds rely on small datasets of 3D shapes. We circumvent the problem by leveraging deep learning methods trained on billions of images. We propose a method to reconstruct point clouds from few images and to denoise point clouds from their rendering by exploiting prior knowledge distilled from image-based deep learning models. To improve reconstruction in constraint settings, we regularize the training of a differentiable renderer with hybrid surface and appearance by introducing semantic consistency supervision. In addition, we propose a pipeline to finetune Stable Diffusion to denoise renderings of noisy point clouds and we demonstrate how these learned filters can be used to remove point cloud noise coming without 3D supervision. We compare our method with DSS and PointRadiance and achieved higher quality 3D reconstruction on the Sketchfab Testset and SCUT Dataset.
April 2024. https://arxiv.org/abs/2404.01112
211 TalkingGaussian: Structure-Persistent 3D Talking Head Synthesis via Gaussian Splatting Jiahe Li,Jiawei Zhang,Xiao Bai,Jin Zheng,Xin Ning,Jun Zhou,Lin Gu
AbstractRadiance fields have demonstrated impressive performance in synthesizing lifelike 3D talking heads. However, due to the difficulty in fitting steep appearance changes, the prevailing paradigm that presents facial motions by directly modifying point appearance may lead to distortions in dynamic regions. To tackle this challenge, we introduce TalkingGaussian, a deformation-based radiance fields framework for high-fidelity talking head synthesis. Leveraging the point-based Gaussian Splatting, facial motions can be represented in our method by applying smooth and continuous deformations to persistent Gaussian primitives, without requiring to learn the difficult appearance change like previous methods. Due to this simplification, precise facial motions can be synthesized while keeping a highly intact facial feature. Under such a deformation paradigm, we further identify a face-mouth motion inconsistency that would affect the learning of detailed speaking motions. To address this conflict, we decompose the model into two branches separately for the face and inside mouth areas, therefore simplifying the learning tasks to help reconstruct more accurate motion and structure of the mouth region. Extensive experiments demonstrate that our method renders high-quality lip-synchronized talking head videos, with better facial fidelity and higher efficiency compared with previous methods.
April 2024. https://arxiv.org/abs/2404.15264
210 FlowMap: High-Quality Camera Poses, Intrinsics, and Depth via Gradient Descent Cameron Smith,David Charatan,Ayush Tewari,Vincent Sitzmann
AbstractThis paper introduces FlowMap, an end-to-end differentiable method that solves for precise camera poses, camera intrinsics, and per-frame dense depth of a video sequence. Our method performs per-video gradient-descent minimization of a simple least-squares objective that compares the optical flow induced by depth, intrinsics, and poses against correspondences obtained via off-the-shelf optical flow and point tracking. Alongside the use of point tracks to encourage long-term geometric consistency, we introduce differentiable re-parameterizations of depth, intrinsics, and pose that are amenable to first-order optimization. We empirically show that camera parameters and dense depth recovered by our method enable photo-realistic novel view synthesis on 360-degree trajectories using Gaussian Splatting. Our method not only far outperforms prior gradient-descent based bundle adjustment methods, but surprisingly performs on par with COLMAP, the state-of-the-art SfM method, on the downstream task of 360-degree novel view synthesis (even though our method is purely gradient-descent based, fully differentiable, and presents a complete departure from conventional SfM).
April 2024. https://arxiv.org/abs/2404.15259
209 Guess The Unseen: Dynamic 3D Scene Reconstruction from Partial 2D Glimpses Inhee Lee,Byungjun Kim,Hanbyul Joo
AbstractIn this paper, we present a method to reconstruct the world and multiple dynamic humans in 3D from a monocular video input. As a key idea, we represent both the world and multiple humans via the recently emerging 3D Gaussian Splatting (3D-GS) representation, enabling to conveniently and efficiently compose and render them together. In particular, we address the scenarios with severely limited and sparse observations in 3D human reconstruction, a common challenge encountered in the real world. To tackle this challenge, we introduce a novel approach to optimize the 3D-GS representation in a canonical space by fusing the sparse cues in the common space, where we leverage a pre-trained 2D diffusion model to synthesize unseen views while keeping the consistency with the observed 2D appearances. We demonstrate our method can reconstruct high-quality animatable 3D humans in various challenging examples, in the presence of occlusion, image crops, few-shot, and extremely sparse observations. After reconstruction, our method is capable of not only rendering the scene in any novel views at arbitrary time instances, but also editing the 3D scene by removing individual humans or applying different motions for each human. Through various experiments, we demonstrate the quality and efficiency of our methods over alternative existing approaches.
April 2024. https://arxiv.org/abs/2404.14410
208 Dynamic Gaussians Mesh: Consistent Mesh Reconstruction from Monocular Videos Isabella Liu,Hao Su,Xiaolong Wang
AbstractModern 3D engines and graphics pipelines require mesh as a memory-efficient representation, which allows efficient rendering, geometry processing, texture editing, and many other downstream operations. However, it is still highly difficult to obtain high-quality mesh in terms of structure and detail from monocular visual observations. The problem becomes even more challenging for dynamic scenes and objects. To this end, we introduce Dynamic Gaussians Mesh (DG-Mesh), a framework to reconstruct a high-fidelity and time-consistent mesh given a single monocular video. Our work leverages the recent advancement in 3D Gaussian Splatting to construct the mesh sequence with temporal consistency from a video. Building on top of this representation, DG-Mesh recovers high-quality meshes from the Gaussian points and can track the mesh vertices over time, which enables applications such as texture editing on dynamic objects. We introduce the Gaussian-Mesh Anchoring, which encourages evenly distributed Gaussians, resulting better mesh reconstruction through mesh-guided densification and pruning on the deformed Gaussians. By applying cycle-consistent deformation between the canonical and the deformed space, we can project the anchored Gaussian back to the canonical space and optimize Gaussians across all time frames. During the evaluation on different datasets, DG-Mesh provides significantly better mesh reconstruction and rendering than baselines. Project page: https://www.liuisabella.com/DG-Mesh/
April 2024. https://arxiv.org/abs/2404.12379
207 Does Gaussian Splatting need SFM Initialization? Yalda Foroutan,Daniel Rebain,Kwang Moo Yi,Andrea Tagliasacchi
Abstract3D Gaussian Splatting has recently been embraced as a versatile and effective method for scene reconstruction and novel view synthesis, owing to its high-quality results and compatibility with hardware rasterization. Despite its advantages, Gaussian Splatting's reliance on high-quality point cloud initialization by Structure-from-Motion (SFM) algorithms is a significant limitation to be overcome. To this end, we investigate various initialization strategies for Gaussian Splatting and delve into how volumetric reconstructions from Neural Radiance Fields (NeRF) can be utilized to bypass the dependency on SFM data. Our findings demonstrate that random initialization can perform much better if carefully designed and that by employing a combination of improved initialization strategies and structure distillation from low-cost NeRF models, it is possible to achieve equivalent results, or at times even superior, to those obtained from SFM initialization.
April 2024. https://arxiv.org/abs/2404.12547
206 CoGS: Controllable Gaussian Splatting Heng Yu,Joel Julin,Zolt\xc3\xa1n \xc3\x81. Milacski,Koichiro Niinuma,L\xc3\xa1szl\xc3\xb3 A. Jeni
AbstractCapturing and re-animating the 3D structure of articulated objects present significant barriers. On one hand, methods requiring extensively calibrated multi-view setups are prohibitively complex and resource-intensive, limiting their practical applicability. On the other hand, while single-camera Neural Radiance Fields (NeRFs) offer a more streamlined approach, they have excessive training and rendering costs. 3D Gaussian Splatting would be a suitable alternative but for two reasons. Firstly, existing methods for 3D dynamic Gaussians require synchronized multi-view cameras, and secondly, the lack of controllability in dynamic scenarios. We present CoGS, a method for Controllable Gaussian Splatting, that enables the direct manipulation of scene elements, offering real-time control of dynamic scenes without the prerequisite of pre-computing control signals. We evaluated CoGS using both synthetic and real-world datasets that include dynamic objects that differ in degree of difficulty. In our evaluations, CoGS consistently outperformed existing dynamic and controllable neural representations in terms of visual fidelity.
December 2023. https://arxiv.org/abs/2312.05664
205 CLIP-GS: CLIP-Informed Gaussian Splatting for Real-time and View-consistent 3D Semantic Understanding Guibiao Liao,Jiankun Li,Zhenyu Bao,Xiaoqing Ye,Jingdong Wang,Qing Li,Kanglin Liu
AbstractThe recent 3D Gaussian Splatting (GS) exhibits high-quality and real-time synthesis of novel views in 3D scenes. Currently, it primarily focuses on geometry and appearance modeling, while lacking the semantic understanding of scenes. To bridge this gap, we present CLIP-GS, which integrates semantics from Contrastive Language-Image Pre-Training (CLIP) into Gaussian Splatting to efficiently comprehend 3D environments without annotated semantic data. In specific, rather than straightforwardly learning and rendering high-dimensional semantic features of 3D Gaussians, which significantly diminishes the efficiency, we propose a Semantic Attribute Compactness (SAC) approach. SAC exploits the inherent unified semantics within objects to learn compact yet effective semantic representations of 3D Gaussians, enabling highly efficient rendering (>100 FPS). Additionally, to address the semantic ambiguity, caused by utilizing view-inconsistent 2D CLIP semantics to supervise Gaussians, we introduce a 3D Coherent Self-training (3DCS) strategy, resorting to the multi-view consistency originated from the 3D model. 3DCS imposes cross-view semantic consistency constraints by leveraging refined, self-predicted pseudo-labels derived from the trained 3D Gaussian model, thereby enhancing precise and view-consistent segmentation results. Extensive experiments demonstrate that our method remarkably outperforms existing state-of-the-art approaches, achieving improvements of 17.29% and 20.81% in mIoU metric on Replica and ScanNet datasets, respectively, while maintaining real-time rendering speed. Furthermore, our approach exhibits superior performance even with sparse input data, verifying the robustness of our method.
April 2024. https://arxiv.org/abs/2404.14249
204 EGGS: Edge Guided Gaussian Splatting for Radiance Fields Yuanhao Gong
AbstractThe Gaussian splatting methods are getting popular. However, their loss function only contains the $\ell_1$ norm and the structural similarity between the rendered and input images, without considering the edges in these images. It is well-known that the edges in an image provide important information. Therefore, in this paper, we propose an Edge Guided Gaussian Splatting (EGGS) method that leverages the edges in the input images. More specifically, we give the edge region a higher weight than the flat region. With such edge guidance, the resulting Gaussian particles focus more on the edges instead of the flat regions. Moreover, such edge guidance does not crease the computation cost during the training and rendering stage. The experiments confirm that such simple edge-weighted loss function indeed improves about $1\sim2$ dB on several difference data sets. With simply plugging in the edge guidance, the proposed method can improve all Gaussian splatting methods in different scenarios, such as human head modeling, building 3D reconstruction, etc.
April 2024. https://arxiv.org/abs/2404.09105
203 GScream: Learning 3D Geometry and Feature Consistent Gaussian Splatting for Object Removal Yuxin Wang,Qianyi Wu,Guofeng Zhang,Dan Xu
AbstractThis paper tackles the intricate challenge of object removal to update the radiance field using the 3D Gaussian Splatting. The main challenges of this task lie in the preservation of geometric consistency and the maintenance of texture coherence in the presence of the substantial discrete nature of Gaussian primitives. We introduce a robust framework specifically designed to overcome these obstacles. The key insight of our approach is the enhancement of information exchange among visible and invisible areas, facilitating content restoration in terms of both geometry and texture. Our methodology begins with optimizing the positioning of Gaussian primitives to improve geometric consistency across both removed and visible areas, guided by an online registration process informed by monocular depth estimation. Following this, we employ a novel feature propagation mechanism to bolster texture coherence, leveraging a cross-attention design that bridges sampling Gaussians from both uncertain and certain areas. This innovative approach significantly refines the texture coherence within the final radiance field. Extensive experiments validate that our method not only elevates the quality of novel view synthesis for scenes undergoing object removal but also showcases notable efficiency gains in training and rendering speeds.
April 2024. https://arxiv.org/abs/2404.13679
202 Learn2Talk: 3D Talking Face Learns from 2D Talking Face Yixiang Zhuang,Baoping Cheng,Yao Cheng,Yuntao Jin,Renshuai Liu,Chengyang Li,Xuan Cheng,Jing Liao,Juncong Lin
AbstractSpeech-driven facial animation methods usually contain two main classes, 3D and 2D talking face, both of which attract considerable research attention in recent years. However, to the best of our knowledge, the research on 3D talking face does not go deeper as 2D talking face, in the aspect of lip-synchronization (lip-sync) and speech perception. To mind the gap between the two sub-fields, we propose a learning framework named Learn2Talk, which can construct a better 3D talking face network by exploiting two expertise points from the field of 2D talking face. Firstly, inspired by the audio-video sync network, a 3D sync-lip expert model is devised for the pursuit of lip-sync between audio and 3D facial motion. Secondly, a teacher model selected from 2D talking face methods is used to guide the training of the audio-to-3D motions regression network to yield more 3D vertex accuracy. Extensive experiments show the advantages of the proposed framework in terms of lip-sync, vertex accuracy and speech perception, compared with state-of-the-arts. Finally, we show two applications of the proposed framework: audio-visual speech recognition and speech-driven 3D Gaussian Splatting based avatar animation.
April 2024. https://arxiv.org/abs/2404.12888
201 EfficientGS: Streamlining Gaussian Splatting for Large-Scale High-Resolution Scene Representation Wenkai Liu,Tao Guan,Bin Zhu,Lili Ju,Zikai Song,Dan Li,Yuesong Wang,Wei Yang
AbstractIn the domain of 3D scene representation, 3D Gaussian Splatting (3DGS) has emerged as a pivotal technology. However, its application to large-scale, high-resolution scenes (exceeding 4k$\times$4k pixels) is hindered by the excessive computational requirements for managing a large number of Gaussians. Addressing this, we introduce 'EfficientGS', an advanced approach that optimizes 3DGS for high-resolution, large-scale scenes. We analyze the densification process in 3DGS and identify areas of Gaussian over-proliferation. We propose a selective strategy, limiting Gaussian increase to key primitives, thereby enhancing the representational efficiency. Additionally, we develop a pruning mechanism to remove redundant Gaussians, those that are merely auxiliary to adjacent ones. For further enhancement, we integrate a sparse order increment for Spherical Harmonics (SH), designed to alleviate storage constraints and reduce training overhead. Our empirical evaluations, conducted on a range of datasets including extensive 4K+ aerial images, demonstrate that 'EfficientGS' not only expedites training and rendering times but also achieves this with a model size approximately tenfold smaller than conventional 3DGS while maintaining high rendering fidelity.
April 2024. https://arxiv.org/abs/2404.12777
200 DeblurGS: Gaussian Splatting for Camera Motion Blur Jeongtaek Oh,Jaeyoung Chung,Dongwoo Lee,Kyoung Mu Lee
AbstractAlthough significant progress has been made in reconstructing sharp 3D scenes from motion-blurred images, a transition to real-world applications remains challenging. The primary obstacle stems from the severe blur which leads to inaccuracies in the acquisition of initial camera poses through Structure-from-Motion, a critical aspect often overlooked by previous approaches. To address this challenge, we propose DeblurGS, a method to optimize sharp 3D Gaussian Splatting from motion-blurred images, even with the noisy camera pose initialization. We restore a fine-grained sharp scene by leveraging the remarkable reconstruction capability of 3D Gaussian Splatting. Our approach estimates the 6-Degree-of-Freedom camera motion for each blurry observation and synthesizes corresponding blurry renderings for the optimization process. Furthermore, we propose Gaussian Densification Annealing strategy to prevent the generation of inaccurate Gaussians at erroneous locations during the early training stages when camera motion is still imprecise. Comprehensive experiments demonstrate that our DeblurGS achieves state-of-the-art performance in deblurring and novel view synthesis for real-world and synthetic benchmark datasets, as well as field-captured blurry smartphone videos.
April 2024. https://arxiv.org/abs/2404.11358
199 Re-Nerfing: Improving Novel Views Synthesis through Novel Views Synthesis Felix Tristram,Stefano Gasperini,Nassir Navab,Federico Tombari
AbstractNeural Radiance Fields (NeRFs) have shown remarkable novel view synthesis capabilities even in large-scale, unbounded scenes, albeit requiring hundreds of views or introducing artifacts in sparser settings. Their optimization suffers from shape-radiance ambiguities wherever only a small visual overlap is available. This leads to erroneous scene geometry and artifacts. In this paper, we propose Re-Nerfing, a simple and general multi-stage data augmentation approach that leverages NeRF's own view synthesis ability to address these limitations. With Re-Nerfing, we enhance the geometric consistency of novel views as follows: First, we train a NeRF with the available views. Then, we use the optimized NeRF to synthesize pseudo-views around the original ones with a view selection strategy to improve coverage and preserve view quality. Finally, we train a second NeRF with both the original images and the pseudo views masking out uncertain regions. Extensive experiments applying Re-Nerfing on various pipelines on the mip-NeRF 360 dataset, including Gaussian Splatting, provide valuable insights into the improvements achievable without external data or supervision, on denser and sparser input scenarios. Project page: https://renerfing.github.io
December 2023. https://arxiv.org/abs/2312.02255
198 Distance and Collision Probability Estimation from Gaussian Surface Models Kshitij Goel,Wennie Tabib
AbstractThis paper describes continuous-space methodologies to estimate the collision probability, Euclidean distance and gradient between an ellipsoidal robot model and an environment surface modeled as a set of Gaussian distributions. Continuous-space collision probability estimation is critical for uncertainty-aware motion planning. Most collision detection and avoidance approaches assume the robot is modeled as a sphere, but ellipsoidal representations provide tighter approximations and enable navigation in cluttered and narrow spaces. State-of-the-art methods derive the Euclidean distance and gradient by processing raw point clouds, which is computationally expensive for large workspaces. Recent advances in Gaussian surface modeling (e.g. mixture models, splatting) enable compressed and high-fidelity surface representations. Few methods exist to estimate continuous-space occupancy from such models. They require Gaussians to model free space and are unable to estimate the collision probability, Euclidean distance and gradient for an ellipsoidal robot. The proposed methods bridge this gap by extending prior work in ellipsoid-to-ellipsoid Euclidean distance and collision probability estimation to Gaussian surface models. A geometric blending approach is also proposed to improve collision probability estimation. The approaches are evaluated with numerical 2D and 3D experiments using real-world point cloud data. Methods for efficient calculation of these quantities are demonstrated to execute within a few microseconds per ellipsoid pair using a single-thread on low-power CPUs of modern embedded computers
February 2024. https://arxiv.org/abs/2402.00186
197 RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering Xianqiang Lyu,Hui Liu,Junhui Hou
AbstractWe propose RainyScape, an unsupervised framework for reconstructing clean scenes from a collection of multi-view rainy images. RainyScape consists of two main modules: a neural rendering module and a rain-prediction module that incorporates a predictor network and a learnable latent embedding that captures the rain characteristics of the scene. Specifically, based on the spectral bias property of neural networks, we first optimize the neural rendering pipeline to obtain a low-frequency scene representation. Subsequently, we jointly optimize the two modules, driven by the proposed adaptive direction-sensitive gradient-based reconstruction loss, which encourages the network to distinguish between scene details and rain streaks, facilitating the propagation of gradients to the relevant components. Extensive experiments on both the classic neural radiance field and the recently proposed 3D Gaussian splatting demonstrate the superiority of our method in effectively eliminating rain streaks and rendering clean images, achieving state-of-the-art performance. The constructed high-quality dataset and source code will be publicly available.
April 2024. https://arxiv.org/abs/2404.11401
196 Novel View Synthesis for Cinematic Anatomy on Mobile and Immersive Displays Simon Niedermayr,Christoph Neuhauser,Kaloian Petkov,Klaus Engel,R\xc3\xbcdiger Westermann
AbstractInteractive photorealistic visualization of 3D anatomy (i.e., Cinematic Anatomy) is used in medical education to explain the structure of the human body. It is currently restricted to frontal teaching scenarios, where the demonstrator needs a powerful GPU and high-speed access to a large storage device where the dataset is hosted. We demonstrate the use of novel view synthesis via compressed 3D Gaussian splatting to overcome this restriction and to enable students to perform cinematic anatomy on lightweight mobile devices and in virtual reality environments. We present an automatic approach for finding a set of images that captures all potentially seen structures in the data. By mixing closeup views with images from a distance, the splat representation can recover structures up to the voxel resolution. The use of Mip-Splatting enables smooth transitions when the focal length is increased. Even for GB datasets, the final renderable representation can usually be compressed to less than 70 MB, enabling interactive rendering on low-end devices using rasterization.
April 2024. https://arxiv.org/abs/2404.11285
195 Gaussian Opacity Fields: Efficient and Compact Surface Reconstruction in Unbounded Scenes Zehao Yu,Torsten Sattler,Andreas Geiger
AbstractRecently, 3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis results, while allowing the rendering of high-resolution images in real-time. However, leveraging 3D Gaussians for surface reconstruction poses significant challenges due to the explicit and disconnected nature of 3D Gaussians. In this work, we present Gaussian Opacity Fields (GOF), a novel approach for efficient, high-quality, and compact surface reconstruction in unbounded scenes. Our GOF is derived from ray-tracing-based volume rendering of 3D Gaussians, enabling direct geometry extraction from 3D Gaussians by identifying its levelset, without resorting to Poisson reconstruction or TSDF fusion as in previous work. We approximate the surface normal of Gaussians as the normal of the ray-Gaussian intersection plane, enabling the application of regularization that significantly enhances geometry. Furthermore, we develop an efficient geometry extraction method utilizing marching tetrahedra, where the tetrahedral grids are induced from 3D Gaussians and thus adapt to the scene's complexity. Our evaluations reveal that GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis. Further, it compares favorably to, or even outperforms, neural implicit methods in both quality and speed.
April 2024. https://arxiv.org/abs/2404.10772
194 Splatter Image: Ultra-Fast Single-View 3D Reconstruction Stanislaw Szymanowicz,Christian Rupprecht,Andrea Vedaldi
AbstractWe introduce the \method, an ultra-efficient approach for monocular 3D object reconstruction. Splatter Image is based on Gaussian Splatting, which allows fast and high-quality reconstruction of 3D scenes from multiple images. We apply Gaussian Splatting to monocular reconstruction by learning a neural network that, at test time, performs reconstruction in a feed-forward manner, at 38 FPS. Our main innovation is the surprisingly straightforward design of this network, which, using 2D operators, maps the input image to one 3D Gaussian per pixel. The resulting set of Gaussians thus has the form an image, the Splatter Image. We further extend the method take several images as input via cross-view attention. Owning to the speed of the renderer (588 FPS), we use a single GPU for training while generating entire images at each iteration to optimize perceptual metrics like LPIPS. On several synthetic, real, multi-category and large-scale benchmark datasets, we achieve better results in terms of PSNR, LPIPS, and other metrics while training and evaluating much faster than prior works. Code, models, demo and more results are available at https://szymanowiczs.github.io/splatter-image.
December 2023. https://arxiv.org/abs/2312.13150
193 SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM Nikhil Keetha,Jay Karhade,Krishna Murthy Jatavallabhula,Gengshan Yang,Sebastian Scherer,Deva Ramanan,Jonathon Luiten
AbstractDense simultaneous localization and mapping (SLAM) is crucial for robotics and augmented reality applications. However, current methods are often hampered by the non-volumetric or implicit way they represent a scene. This work introduces SplaTAM, an approach that, for the first time, leverages explicit volumetric representations, i.e., 3D Gaussians, to enable high-fidelity reconstruction from a single unposed RGB-D camera, surpassing the capabilities of existing methods. SplaTAM employs a simple online tracking and mapping system tailored to the underlying Gaussian representation. It utilizes a silhouette mask to elegantly capture the presence of scene density. This combination enables several benefits over prior representations, including fast rendering and dense optimization, quickly determining if areas have been previously mapped, and structured map expansion by adding more Gaussians. Extensive experiments show that SplaTAM achieves up to 2x superior performance in camera pose estimation, map construction, and novel-view synthesis over existing methods, paving the way for more immersive high-fidelity SLAM applications.
December 2023. https://arxiv.org/abs/2312.02126
192 Gaussian Splatting Decoder for 3D-aware Generative Adversarial Networks Florian Barthel,Arian Beckmann,Wieland Morgenstern,Anna Hilsmann,Peter Eisert
AbstractNeRF-based 3D-aware Generative Adversarial Networks (GANs) like EG3D or GIRAFFE have shown very high rendering quality under large representational variety. However, rendering with Neural Radiance Fields poses challenges for 3D applications: First, the significant computational demands of NeRF rendering preclude its use on low-power devices, such as mobiles and VR/AR headsets. Second, implicit representations based on neural networks are difficult to incorporate into explicit 3D scenes, such as VR environments or video games. 3D Gaussian Splatting (3DGS) overcomes these limitations by providing an explicit 3D representation that can be rendered efficiently at high frame rates. In this work, we present a novel approach that combines the high rendering quality of NeRF-based 3D-aware GANs with the flexibility and computational advantages of 3DGS. By training a decoder that maps implicit NeRF representations to explicit 3D Gaussian Splatting attributes, we can integrate the representational diversity and quality of 3D GANs into the ecosystem of 3D Gaussian Splatting for the first time. Additionally, our approach allows for a high resolution GAN inversion and real-time GAN editing with 3D Gaussian Splatting scenes.
April 2024. https://arxiv.org/abs/2404.10625
191 LoopGaussian: Creating 3D Cinemagraph with Multi-view Images via Eulerian Motion Field Jiyang Li,Lechao Cheng,Zhangye Wang,Tingting Mu,Jingxuan He
AbstractCinemagraph is a unique form of visual media that combines elements of still photography and subtle motion to create a captivating experience. However, the majority of videos generated by recent works lack depth information and are confined to the constraints of 2D image space. In this paper, inspired by significant progress in the field of novel view synthesis (NVS) achieved by 3D Gaussian Splatting (3D-GS), we propose LoopGaussian to elevate cinemagraph from 2D image space to 3D space using 3D Gaussian modeling. To achieve this, we first employ the 3D-GS method to reconstruct 3D Gaussian point clouds from multi-view images of static scenes,incorporating shape regularization terms to prevent blurring or artifacts caused by object deformation. We then adopt an autoencoder tailored for 3D Gaussian to project it into feature space. To maintain the local continuity of the scene, we devise SuperGaussian for clustering based on the acquired features. By calculating the similarity between clusters and employing a two-stage estimation method, we derive an Eulerian motion field to describe velocities across the entire scene. The 3D Gaussian points then move within the estimated Eulerian motion field. Through bidirectional animation techniques, we ultimately generate a 3D Cinemagraph that exhibits natural and seamlessly loopable dynamics. Experiment results validate the effectiveness of our approach, demonstrating high-quality and visually appealing scene generation. The project is available at https://pokerlishao.github.io/LoopGaussian/.
April 2024. https://arxiv.org/abs/2404.08966
190 GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis Shunyuan Zheng,Boyao Zhou,Ruizhi Shao,Boning Liu,Shengping Zhang,Liqiang Nie,Yebin Liu
AbstractWe present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner. The proposed method enables 2K-resolution rendering under a sparse-view camera setting. Unlike the original Gaussian Splatting or neural implicit rendering methods that necessitate per-subject optimizations, we introduce Gaussian parameter maps defined on the source views and regress directly Gaussian Splatting properties for instant novel view synthesis without any fine-tuning or optimization. To this end, we train our Gaussian parameter regression module on a large amount of human scan data, jointly with a depth estimation module to lift 2D parameter maps to 3D space. The proposed framework is fully differentiable and experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
December 2023. https://arxiv.org/abs/2312.02155
189 AbsGS: Recovering Fine Details for 3D Gaussian Splatting Zongxin Ye,Wenyu Li,Sidun Liu,Peng Qiao,Yong Dou
Abstract3D Gaussian Splatting (3D-GS) technique couples 3D Gaussian primitives with differentiable rasterization to achieve high-quality novel view synthesis results while providing advanced real-time rendering performance. However, due to the flaw of its adaptive density control strategy in 3D-GS, it frequently suffers from over-reconstruction issue in intricate scenes containing high-frequency details, leading to blurry rendered images. The underlying reason for the flaw has still been under-explored. In this work, we present a comprehensive analysis of the cause of aforementioned artifacts, namely gradient collision, which prevents large Gaussians in over-reconstructed regions from splitting. To address this issue, we propose the novel homodirectional view-space positional gradient as the criterion for densification. Our strategy efficiently identifies large Gaussians in over-reconstructed regions, and recovers fine details by splitting. We evaluate our proposed method on various challenging datasets. The experimental results indicate that our approach achieves the best rendering quality with reduced or similar memory consumption. Our method is easy to implement and can be incorporated into a wide variety of most recent Gaussian Splatting-based methods. We will open source our codes upon formal publication. Our project page is available at: https://ty424.github.io/AbsGS.github.io/
April 2024. https://arxiv.org/abs/2404.10484
188 SRGS: Super-Resolution 3D Gaussian Splatting Xiang Feng,Yongbo He,Yubo Wang,Yan Yang,Zhenzhong Kuang,Yu Jun,Jianping Fan,Jiajun ding
AbstractRecently, 3D Gaussian Splatting (3DGS) has gained popularity as a novel explicit 3D representation. This approach relies on the representation power of Gaussian primitives to provide a high-quality rendering. However, primitives optimized at low resolution inevitably exhibit sparsity and texture deficiency, posing a challenge for achieving high-resolution novel view synthesis (HRNVS). To address this problem, we propose Super-Resolution 3D Gaussian Splatting (SRGS) to perform the optimization in a high-resolution (HR) space. The sub-pixel constraint is introduced for the increased viewpoints in HR space, exploiting the sub-pixel cross-view information of the multiple low-resolution (LR) views. The gradient accumulated from more viewpoints will facilitate the densification of primitives. Furthermore, a pre-trained 2D super-resolution model is integrated with the sub-pixel constraint, enabling these dense primitives to learn faithful texture features. In general, our method focuses on densification and texture learning to effectively enhance the representation ability of primitives. Experimentally, our method achieves high rendering quality on HRNVS only with LR inputs, outperforming state-of-the-art methods on challenging datasets such as Mip-NeRF 360 and Tanks & Temples. Related codes will be released upon acceptance.
April 2024. https://arxiv.org/abs/2404.10318
187 LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives Jiadi Cui,Junming Cao,Yuhui Zhong,Liao Wang,Fuqiang Zhao,Penghao Wang,Yifan Chen,Zhipeng He,Lan Xu,Yujiao Shi,Yingliang Zhang,Jingyi Yu
AbstractLarge garages are ubiquitous yet intricate scenes in our daily lives, posing challenges characterized by monotonous colors, repetitive patterns, reflective surfaces, and transparent vehicle glass. Conventional Structure from Motion (SfM) methods for camera pose estimation and 3D reconstruction fail in these environments due to poor correspondence construction. To address these challenges, this paper introduces LetsGo, a LiDAR-assisted Gaussian splatting approach for large-scale garage modeling and rendering. We develop a handheld scanner, Polar, equipped with IMU, LiDAR, and a fisheye camera, to facilitate accurate LiDAR and image data scanning. With this Polar device, we present a GarageWorld dataset consisting of five expansive garage scenes with diverse geometric structures and will release the dataset to the community for further research. We demonstrate that the collected LiDAR point cloud by the Polar device enhances a suite of 3D Gaussian splatting algorithms for garage scene modeling and rendering. We also propose a novel depth regularizer for 3D Gaussian splatting algorithm training, effectively eliminating floating artifacts in rendered images, and a lightweight Level of Detail (LOD) Gaussian renderer for real-time viewing on web-based devices. Additionally, we explore a hybrid representation that combines the advantages of traditional mesh in depicting simple geometry and colors (e.g., walls and the ground) with modern 3D Gaussian representations capturing complex details and high-frequency textures. This strategy achieves an optimal balance between memory performance and rendering quality. Experimental results on our dataset, along with ScanNet++ and KITTI-360, demonstrate the superiority of our method in rendering quality and resource efficiency.
April 2024. https://arxiv.org/abs/2404.09748
186 3D Gaussian Splatting as Markov Chain Monte Carlo Shakiba Kheradmand,Daniel Rebain,Gopal Sharma,Weiwei Sun,Jeff Tseng,Hossam Isack,Abhishek Kar,Andrea Tagliasacchi,Kwang Moo Yi
AbstractWhile 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which does not always generalize and may lead to poor-quality renderings. In addition, for real-world scenes, they rely on a good initial point cloud to perform well. In this work, we rethink 3D Gaussians as random samples drawn from an underlying probability distribution describing the physical representation of the scene -- in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates are strikingly similar to a Stochastic Langevin Gradient Descent (SGLD) update. As with MCMC, samples are nothing but past visit locations, adding new Gaussians under our framework can simply be realized without heuristics as placing Gaussians at existing Gaussian locations. To encourage using fewer Gaussians for efficiency, we introduce an L1-regularizer on the Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.
April 2024. https://arxiv.org/abs/2404.09591
185 ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering Haokai Pang,Heming Zhu,Adam Kortylewski,Christian Theobalt,Marc Habermann
AbstractReal-time rendering of photorealistic and controllable human avatars stands as a cornerstone in Computer Vision and Graphics. While recent advances in neural implicit rendering have unlocked unprecedented photorealism for digital avatars, real-time performance has mostly been demonstrated for static scenes only. To address this, we propose ASH, an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time. We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering. However, naively learning the Gaussian parameters in 3D space poses a severe challenge in terms of compute. Instead, we attach the Gaussians onto a deformable character model, and learn their parameters in 2D texture space, which allows leveraging efficient 2D convolutional architectures that easily scale with the required number of Gaussians. We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
December 2023. https://arxiv.org/abs/2312.05941
184 CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting Xiangrui Liu,Xinju Wu,Pingping Zhang,Shiqi Wang,Zhu Li,Sam Kwong
AbstractGaussian splatting, renowned for its exceptional rendering quality and efficiency, has emerged as a prominent technique in 3D scene representation. However, the substantial data volume of Gaussian splatting impedes its practical utility in real-world applications. Herein, we propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS), which harnesses compact Gaussian primitives for faithful 3D scene modeling with a remarkably reduced data size. To ensure the compactness of Gaussian primitives, we devise a hybrid primitive structure that captures predictive relationships between each other. Then, we exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms. Moreover, we develop a rate-constrained optimization scheme to eliminate redundancies within such hybrid primitives, steering our CompGS towards an optimal trade-off between bitrate consumption and representation efficacy. Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality. Our code will be released on GitHub for further research.
April 2024. https://arxiv.org/abs/2404.09458
183 OccGaussian: 3D Gaussian Splatting for Occluded Human Rendering Jingrui Ye,Zongkai Zhang,Yujiao Jiang,Qingmin Liao,Wenming Yang,Zongqing Lu
AbstractRendering dynamic 3D human from monocular videos is crucial for various applications such as virtual reality and digital entertainment. Most methods assume the people is in an unobstructed scene, while various objects may cause the occlusion of body parts in real-life scenarios. Previous method utilizing NeRF for surface rendering to recover the occluded areas, but it requiring more than one day to train and several seconds to render, failing to meet the requirements of real-time interactive applications. To address these issues, we propose OccGaussian based on 3D Gaussian Splatting, which can be trained within 6 minutes and produces high-quality human renderings up to 160 FPS with occluded input. OccGaussian initializes 3D Gaussian distributions in the canonical space, and we perform occlusion feature query at occluded regions, the aggregated pixel-align feature is extracted to compensate for the missing information. Then we use Gaussian Feature MLP to further process the feature along with the occlusion-aware loss functions to better perceive the occluded area. Extensive experiments both in simulated and real-world occlusions, demonstrate that our method achieves comparable or even superior performance compared to the state-of-the-art method. And we improving training and inference speeds by 250x and 800x, respectively. Our code will be available for research purposes.
April 2024. https://arxiv.org/abs/2404.08449
182 DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading Tong Wu,Jia-Mu Sun,Yu-Kun Lai,Yuewen Ma,Leif Kobbelt,Lin Gao
AbstractReconstructing and editing 3D objects and scenes both play crucial roles in computer graphics and computer vision. Neural radiance fields (NeRFs) can achieve realistic reconstruction and editing results but suffer from inefficiency in rendering. Gaussian splatting significantly accelerates rendering by rasterizing Gaussian ellipsoids. However, Gaussian splatting utilizes a single Spherical Harmonic (SH) function to model both texture and lighting, limiting independent editing capabilities of these components. Recently, attempts have been made to decouple texture and lighting with the Gaussian splatting representation but may fail to produce plausible geometry and decomposition results on reflective scenes. Additionally, the forward shading technique they employ introduces noticeable blending artifacts during relighting, as the geometry attributes of Gaussians are optimized under the original illumination and may not be suitable for novel lighting conditions. To address these issues, we introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading. To achieve successful decoupling, we model the illumination with a learnable environment map and define additional attributes such as texture parameters and normal direction on Gaussians, where the normal is distilled from a jointly trained signed distance function. More importantly, we apply deferred shading, resulting in more realistic relighting effects compared to previous methods. Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view synthesis and editing tasks.
April 2024. https://arxiv.org/abs/2404.09412
181 Gaussian Splatting SLAM Hidenobu Matsuki,Riku Murai,Paul H. J. Kelly,Andrew J. Davison
AbstractWe present the first application of 3D Gaussian Splatting in monocular SLAM, the most fundamental but the hardest setup for Visual SLAM. Our method, which runs live at 3fps, utilises Gaussians as the only 3D representation, unifying the required representation for accurate, efficient tracking, mapping, and high-quality rendering. Designed for challenging monocular settings, our approach is seamlessly extendable to RGB-D SLAM when an external depth sensor is available. Several innovations are required to continuously reconstruct 3D scenes with high fidelity from a live camera. First, to move beyond the original 3DGS algorithm, which requires accurate poses from an offline Structure from Motion (SfM) system, we formulate camera tracking for 3DGS using direct optimisation against the 3D Gaussians, and show that this enables fast and robust tracking with a wide basin of convergence. Second, by utilising the explicit nature of the Gaussians, we introduce geometric verification and regularisation to handle the ambiguities occurring in incremental 3D dense reconstruction. Finally, we introduce a full SLAM system which not only achieves state-of-the-art results in novel view synthesis and trajectory estimation but also reconstruction of tiny and even transparent objects.
December 2023. https://arxiv.org/abs/2312.06741
180 DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling Xuening Yuan,Hongyu Yang,Yueming Zhao,Di Huang
AbstractRecent progress in text-to-3D creation has been propelled by integrating the potent prior of Diffusion Models from text-to-image generation into the 3D domain. Nevertheless, generating 3D scenes characterized by multiple instances and intricate arrangements remains challenging. In this study, we present DreamScape, a method for creating highly consistent 3D scenes solely from textual descriptions, leveraging the strong 3D representation capabilities of Gaussian Splatting and the complex arrangement abilities of large language models (LLMs). Our approach involves a 3D Gaussian Guide ($3{DG^2}$) for scene representation, consisting of semantic primitives (objects) and their spatial transformations and relationships derived directly from text prompts using LLMs. This compositional representation allows for local-to-global optimization of the entire scene. A progressive scale control is tailored during local object generation, ensuring that objects of different sizes and densities adapt to the scene, which addresses training instability issue arising from simple blending in the subsequent global optimization stage. To mitigate potential biases of LLM priors, we model collision relationships between objects at the global level, enhancing physical correctness and overall realism. Additionally, to generate pervasive objects like rain and snow distributed extensively across the scene, we introduce a sparse initialization and densification strategy. Experiments demonstrate that DreamScape offers high usability and controllability, enabling the generation of high-fidelity 3D scenes from only text prompts and achieving state-of-the-art performance compared to other methods.
April 2024. https://arxiv.org/abs/2404.09227
179 3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis Zhicheng Lu,Xiang Guo,Le Hui,Tianrui Chen,Min Yang,Xiao Tang,Feng Zhu,Yuchao Dai
AbstractIn this paper, we propose a 3D geometry-aware deformable Gaussian Splatting method for dynamic view synthesis. Existing neural radiance fields (NeRF) based solutions learn the deformation in an implicit manner, which cannot incorporate 3D scene geometry. Therefore, the learned deformation is not necessarily geometrically coherent, which results in unsatisfactory dynamic view synthesis and 3D dynamic reconstruction. Recently, 3D Gaussian Splatting provides a new representation of the 3D scene, building upon which the 3D geometry could be exploited in learning the complex 3D deformation. Specifically, the scenes are represented as a collection of 3D Gaussian, where each 3D Gaussian is optimized to move and rotate over time to model the deformation. To enforce the 3D scene geometry constraint during deformation, we explicitly extract 3D geometry features and integrate them in learning the 3D deformation. In this way, our solution achieves 3D geometry-aware deformation modeling, which enables improved dynamic view synthesis and 3D dynamic reconstruction. Extensive experimental results on both synthetic and real datasets prove the superiority of our solution, which achieves new state-of-the-art performance. The project is available at https://npucvr.github.io/GaGS/
April 2024. https://arxiv.org/abs/2404.06270
178 A Survey on 3D Gaussian Splatting Guikun Chen,Wenguan Wang
Abstract3D Gaussian splatting (GS) has recently emerged as a transformative technique in the realm of explicit radiance field and computer graphics. This innovative approach, characterized by the utilization of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research in this domain. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in applicable and explicit radiance field representation.
January 2024. https://arxiv.org/abs/2401.03890
177 GauU-Scene V2: Assessing the Reliability of Image-Based Metrics with Expansive Lidar Image Dataset Using 3DGS and NeRF Butian Xiong,Nanjun Zheng,Junhua Liu,Zhen Li
AbstractWe introduce a novel, multimodal large-scale scene reconstruction benchmark that utilizes newly developed 3D representation approaches: Gaussian Splatting and Neural Radiance Fields (NeRF). Our expansive U-Scene dataset surpasses any previously existing real large-scale outdoor LiDAR and image dataset in both area and point count. GauU-Scene encompasses over 6.5 square kilometers and features a comprehensive RGB dataset coupled with LiDAR ground truth. Additionally, we are the first to propose a LiDAR and image alignment method for a drone-based dataset. Our assessment of GauU-Scene includes a detailed analysis across various novel viewpoints, employing image-based metrics such as SSIM, LPIPS, and PSNR on NeRF and Gaussian Splatting based methods. This analysis reveals contradictory results when applying geometric-based metrics like Chamfer distance. The experimental results on our multimodal dataset highlight the unreliability of current image-based metrics and reveal significant drawbacks in geometric reconstruction using the current Gaussian Splatting-based method, further illustrating the necessity of our dataset for assessing geometry reconstruction tasks. We also provide detailed supplementary information on data collection protocols and make the dataset available on the following anonymous project page
April 2024. https://arxiv.org/abs/2404.04880
176 Recent Advances in 3D Gaussian Splatting Tong Wu,Yu-Jie Yuan,Ling-Xiao Zhang,Jie Yang,Yan-Pei Cao,Ling-Qi Yan,Lin Gao
AbstractThe emergence of 3D Gaussian Splatting (3DGS) has greatly accelerated the rendering speed of novel view synthesis. Unlike neural implicit representations like Neural Radiance Fields (NeRF) that represent a 3D scene with position and viewpoint-conditioned neural networks, 3D Gaussian Splatting utilizes a set of Gaussian ellipsoids to model the scene so that efficient rendering can be accomplished by rasterizing Gaussian ellipsoids into images. Apart from the fast rendering speed, the explicit representation of 3D Gaussian Splatting facilitates editing tasks like dynamic reconstruction, geometry editing, and physical simulation. Considering the rapid change and growing number of works in this field, we present a literature review of recent 3D Gaussian Splatting methods, which can be roughly classified into 3D reconstruction, 3D editing, and other downstream applications by functionality. Traditional point-based rendering methods and the rendering formulation of 3D Gaussian Splatting are also illustrated for a better understanding of this technique. This survey aims to help beginners get into this field quickly and provide experienced researchers with a comprehensive overview, which can stimulate the future development of the 3D Gaussian Splatting representation.
March 2024. https://arxiv.org/abs/2403.11134
175 View-Consistent 3D Editing with Gaussian Splatting Yuxuan Wang,Xuanyu Yi,Zike Wu,Na Zhao,Long Chen,Hanwang Zhang
AbstractThe advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes.
March 2024. https://arxiv.org/abs/2403.11868
174 SpikeNVS: Enhancing Novel View Synthesis from Blurry Images via Spike Camera Gaole Dai,Zhenyu Wang,Qinwen Xu,Ming Lu,Wen Chen,Boxin Shi,Shanghang Zhang,Tiejun Huang
AbstractOne of the most critical factors in achieving sharp Novel View Synthesis (NVS) using neural field methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) is the quality of the training images. However, Conventional RGB cameras are susceptible to motion blur. In contrast, neuromorphic cameras like event and spike cameras inherently capture more comprehensive temporal information, which can provide a sharp representation of the scene as additional training data. Recent methods have explored the integration of event cameras to improve the quality of NVS. The event-RGB approaches have some limitations, such as high training costs and the inability to work effectively in the background. Instead, our study introduces a new method that uses the spike camera to overcome these limitations. By considering texture reconstruction from spike streams as ground truth, we design the Texture from Spike (TfS) loss. Since the spike camera relies on temporal integration instead of temporal differentiation used by event cameras, our proposed TfS loss maintains manageable training costs. It handles foreground objects with backgrounds simultaneously. We also provide a real-world dataset captured with our spike-RGB camera system to facilitate future research endeavors. We conduct extensive experiments using synthetic and real-world datasets to demonstrate that our design can enhance novel view synthesis across NeRF and 3DGS. The code and dataset will be made available for public access.
April 2024. https://arxiv.org/abs/2404.06710
173 GoMAvatar: Efficient Animatable Human Modeling from Monocular Video Using Gaussians-on-Mesh Jing Wen,Xiaoming Zhao,Zhongzheng Ren,Alexander G. Schwing,Shenlong Wang
AbstractWe introduce GoMAvatar, a novel approach for real-time, memory-efficient, high-quality animatable human modeling. GoMAvatar takes as input a single monocular video to create a digital avatar capable of re-articulation in new poses and real-time rendering from novel viewpoints, while seamlessly integrating with rasterization-based graphics pipelines. Central to our method is the Gaussians-on-Mesh representation, a hybrid 3D model combining rendering quality and speed of Gaussian splatting with geometry modeling and compatibility of deformable meshes. We assess GoMAvatar on ZJU-MoCap data and various YouTube videos. GoMAvatar matches or surpasses current monocular human modeling algorithms in rendering quality and significantly outperforms them in computational efficiency (43 FPS) while being memory-efficient (3.63 MB per subject).
April 2024. https://arxiv.org/abs/2404.07991
172 How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey Fabio Tosi,Youmin Zhang,Ziren Gong,Erik Sandstr\xc3\xb6m,Stefano Mattoccia,Martin R. Oswald,Matteo Poggi
AbstractOver the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and serves as a fundamental reference to highlight the dynamic progress and specific challenges.
February 2024. https://arxiv.org/abs/2402.13255
171 RealmDreamer: Text-Driven 3D Scene Generation with Inpainting and Depth Diffusion Jaidev Shriram,Alex Trevithick,Lingjie Liu,Ravi Ramamoorthi
AbstractWe introduce RealmDreamer, a technique for generation of general forward-facing 3D scenes from text descriptions. Our technique optimizes a 3D Gaussian Splatting representation to match complex text prompts. We initialize these splats by utilizing the state-of-the-art text-to-image generators, lifting their samples into 3D, and computing the occlusion volume. We then optimize this representation across multiple views as a 3D inpainting task with image-conditional diffusion models. To learn correct geometric structure, we incorporate a depth diffusion model by conditioning on the samples from the inpainting model, giving rich geometric structure. Finally, we finetune the model using sharpened samples from image generators. Notably, our technique does not require video or multi-view data and can synthesize a variety of high-quality 3D scenes in different styles, consisting of multiple objects. Its generality additionally allows 3D synthesis from a single image.
April 2024. https://arxiv.org/abs/2404.07199
170 Gaussian-LIC: Photo-realistic LiDAR-Inertial-Camera SLAM with 3D Gaussian Splatting Xiaolei Lang,Laijian Li,Hang Zhang,Feng Xiong,Mu Xu,Yong Liu,Xingxing Zuo,Jiajun Lv
AbstractWe present a real-time LiDAR-Inertial-Camera SLAM system with 3D Gaussian Splatting as the mapping backend. Leveraging robust pose estimates from our LiDAR-Inertial-Camera odometry, Coco-LIC, an incremental photo-realistic mapping system is proposed in this paper. We initialize 3D Gaussians from colorized LiDAR points and optimize them using differentiable rendering powered by 3D Gaussian Splatting. Meticulously designed strategies are employed to incrementally expand the Gaussian map and adaptively control its density, ensuring high-quality mapping with real-time capability. Experiments conducted in diverse scenarios demonstrate the superior performance of our method compared to existing radiance-field-based SLAM systems.
April 2024. https://arxiv.org/abs/2404.06926
169 DreamScene360: Unconstrained Text-to-3D Scene Generation with Panoramic Gaussian Splatting Shijie Zhou,Zhiwen Fan,Dejia Xu,Haoran Chang,Pradyumna Chari,Tejas Bharadwaj,Suya You,Zhangyang Wang,Achuta Kadambi
AbstractThe increasing demand for virtual reality applications has highlighted the significance of crafting immersive 3D assets. We present a text-to-3D 360$^{\circ}$ scene generation pipeline that facilitates the creation of comprehensive 360$^{\circ}$ scenes for in-the-wild environments in a matter of minutes. Our approach utilizes the generative power of a 2D diffusion model and prompt self-refinement to create a high-quality and globally coherent panoramic image. This image acts as a preliminary "flat" (2D) scene representation. Subsequently, it is lifted into 3D Gaussians, employing splatting techniques to enable real-time exploration. To produce consistent 3D geometry, our pipeline constructs a spatially coherent structure by aligning the 2D monocular depth into a globally optimized point cloud. This point cloud serves as the initial state for the centroids of 3D Gaussians. In order to address invisible issues inherent in single-view inputs, we impose semantic and geometric constraints on both synthesized and input camera views as regularizations. These guide the optimization of Gaussians, aiding in the reconstruction of unseen regions. In summary, our method offers a globally consistent 3D scene within a 360$^{\circ}$ perspective, providing an enhanced immersive experience over existing techniques. Project website at: http://dreamscene360.github.io/
April 2024. https://arxiv.org/abs/2404.06903
168 SplatPose & Detect: Pose-Agnostic 3D Anomaly Detection Mathis Kruse,Marco Rudolph,Dominik Woiwode,Bodo Rosenhahn
AbstractDetecting anomalies in images has become a well-explored problem in both academia and industry. State-of-the-art algorithms are able to detect defects in increasingly difficult settings and data modalities. However, most current methods are not suited to address 3D objects captured from differing poses. While solutions using Neural Radiance Fields (NeRFs) have been proposed, they suffer from excessive computation requirements, which hinder real-world usability. For this reason, we propose the novel 3D Gaussian splatting-based framework SplatPose which, given multi-view images of a 3D object, accurately estimates the pose of unseen views in a differentiable manner, and detects anomalies in them. We achieve state-of-the-art results in both training and inference speed, and detection performance, even when using less training data than competing methods. We thoroughly evaluate our framework using the recently proposed Pose-agnostic Anomaly Detection benchmark and its multi-pose anomaly detection (MAD) data set.
April 2024. https://arxiv.org/abs/2404.06832
167 Zero-shot Point Cloud Completion Via 2D Priors Tianxin Huang,Zhiwen Yan,Yuyang Zhao,Gim Hee Lee
Abstract3D point cloud completion is designed to recover complete shapes from partially observed point clouds. Conventional completion methods typically depend on extensive point cloud data for training %, with their effectiveness often constrained to object categories similar to those seen during training. In contrast, we propose a zero-shot framework aimed at completing partially observed point clouds across any unseen categories. Leveraging point rendering via Gaussian Splatting, we develop techniques of Point Cloud Colorization and Zero-shot Fractal Completion that utilize 2D priors from pre-trained diffusion models to infer missing regions. Experimental results on both synthetic and real-world scanned point clouds demonstrate that our approach outperforms existing methods in completing a variety of objects without any requirement for specific training data.
April 2024. https://arxiv.org/abs/2404.06814
166 GaussianImage: 1000 FPS Image Representation and Compression by 2D Gaussian Splatting Xinjie Zhang,Xingtong Ge,Tongda Xu,Dailan He,Yan Wang,Hongwei Qin,Guo Lu,Jing Geng,Jun Zhang
AbstractImplicit neural representations (INRs) recently achieved great success in image representation and compression, offering high visual quality and fast rendering speeds with 10-1000 FPS, assuming sufficient GPU resources are available. However, this requirement often hinders their use on low-end devices with limited memory. In response, we propose a groundbreaking paradigm of image representation and compression by 2D Gaussian Splatting, named GaussianImage. We first introduce 2D Gaussian to represent the image, where each Gaussian has 8 parameters including position, covariance and color. Subsequently, we unveil a novel rendering algorithm based on accumulated summation. Remarkably, our method with a minimum of 3$\times$ lower GPU memory usage and 5$\times$ faster fitting time not only rivals INRs (e.g., WIRE, I-NGP) in representation performance, but also delivers a faster rendering speed of 1500-2000 FPS regardless of parameter size. Furthermore, we integrate existing vector quantization technique to build an image codec. Experimental results demonstrate that our codec attains rate-distortion performance comparable to compression-based INRs such as COIN and COIN++, while facilitating decoding speeds of approximately 1000 FPS. Additionally, preliminary proof of concept shows that our codec surpasses COIN and COIN++ in performance when using partial bits-back coding. Code will be available at https://github.com/Xinjie-Q/GaussianImage.
March 2024. https://arxiv.org/abs/2403.08551
165 Gaussian Pancakes: Geometrically-Regularized 3D Gaussian Splatting for Realistic Endoscopic Reconstruction Sierra Bonilla,Shuai Zhang,Dimitrios Psychogyios,Danail Stoyanov,Francisco Vasconcelos,Sophia Bano
AbstractWithin colorectal cancer diagnostics, conventional colonoscopy techniques face critical limitations, including a limited field of view and a lack of depth information, which can impede the detection of precancerous lesions. Current methods struggle to provide comprehensive and accurate 3D reconstructions of the colonic surface which can help minimize the missing regions and reinspection for pre-cancerous polyps. Addressing this, we introduce 'Gaussian Pancakes', a method that leverages 3D Gaussian Splatting (3D GS) combined with a Recurrent Neural Network-based Simultaneous Localization and Mapping (RNNSLAM) system. By introducing geometric and depth regularization into the 3D GS framework, our approach ensures more accurate alignment of Gaussians with the colon surface, resulting in smoother 3D reconstructions with novel viewing of detailed textures and structures. Evaluations across three diverse datasets show that Gaussian Pancakes enhances novel view synthesis quality, surpassing current leading methods with a 18% boost in PSNR and a 16% improvement in SSIM. It also delivers over 100X faster rendering and more than 10X shorter training times, making it a practical tool for real-time applications. Hence, this holds promise for achieving clinical translation for better detection and diagnosis of colorectal cancer.
April 2024. https://arxiv.org/abs/2404.06128
164 Revising Densification in Gaussian Splatting Samuel Rota Bul\xc3\xb2,Lorenzo Porzi,Peter Kontschieder
AbstractIn this paper, we address the limitations of Adaptive Density Control (ADC) in 3D Gaussian Splatting (3DGS), a scene representation method achieving high-quality, photorealistic results for novel view synthesis. ADC has been introduced for automatic 3D point primitive management, controlling densification and pruning, however, with certain limitations in the densification logic. Our main contribution is a more principled, pixel-error driven formulation for density control in 3DGS, leveraging an auxiliary, per-pixel error function as the criterion for densification. We further introduce a mechanism to control the total number of primitives generated per scene and correct a bias in the current opacity handling strategy of ADC during cloning operations. Our approach leads to consistent quality improvements across a variety of benchmark scenes, without sacrificing the method's efficiency.
April 2024. https://arxiv.org/abs/2404.06109
163 Hash3D: Training-free Acceleration for 3D Generation Xingyi Yang,Xinchao Wang
AbstractThe evolution of 3D generative modeling has been notably propelled by the adoption of 2D diffusion models. Despite this progress, the cumbersome optimization process per se presents a critical hurdle to efficiency. In this paper, we introduce Hash3D, a universal acceleration for 3D generation without model training. Central to Hash3D is the insight that feature-map redundancy is prevalent in images rendered from camera positions and diffusion time-steps in close proximity. By effectively hashing and reusing these feature maps across neighboring timesteps and camera angles, Hash3D substantially prevents redundant calculations, thus accelerating the diffusion model's inference in 3D generation tasks. We achieve this through an adaptive grid-based hashing. Surprisingly, this feature-sharing mechanism not only speed up the generation but also enhances the smoothness and view consistency of the synthesized 3D objects. Our experiments covering 5 text-to-3D and 3 image-to-3D models, demonstrate Hash3D's versatility to speed up optimization, enhancing efficiency by 1.3 to 4 times. Additionally, Hash3D's integration with 3D Gaussian splatting largely speeds up 3D model creation, reducing text-to-3D processing to about 10 minutes and image-to-3D conversion to roughly 30 seconds. The project page is at https://adamdad.github.io/hash3D/.
April 2024. https://arxiv.org/abs/2404.06091
162 FreGS: 3D Gaussian Splatting with Progressive Frequency Regularization Jiahui Zhang,Fangneng Zhan,Muyu Xu,Shijian Lu,Eric Xing
Abstract3D Gaussian splatting has achieved very impressive performance in real-time novel view synthesis. However, it often suffers from over-reconstruction during Gaussian densification where high-variance image regions are covered by a few large Gaussians only, leading to blur and artifacts in the rendered images. We design a progressive frequency regularization (FreGS) technique to tackle the over-reconstruction issue within the frequency space. Specifically, FreGS performs coarse-to-fine Gaussian densification by exploiting low-to-high frequency components that can be easily extracted with low-pass and high-pass filters in the Fourier space. By minimizing the discrepancy between the frequency spectrum of the rendered image and the corresponding ground truth, it achieves high-quality Gaussian densification and alleviates the over-reconstruction of Gaussian splatting effectively. Experiments over multiple widely adopted benchmarks (e.g., Mip-NeRF360, Tanks-and-Temples and Deep Blending) show that FreGS achieves superior novel view synthesis and outperforms the state-of-the-art consistently.
March 2024. https://arxiv.org/abs/2403.06908
161 Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields Shijie Zhou,Haoran Chang,Sicheng Jiang,Zhiwen Fan,Zehao Zhu,Dejia Xu,Pradyumna Chari,Suya You,Zhangyang Wang,Achuta Kadambi
Abstract3D scene representations have gained immense popularity in recent years. Methods that use Neural Radiance fields are versatile for traditional tasks such as novel view synthesis. In recent times, some work has emerged that aims to extend the functionality of NeRF beyond view synthesis, for semantically aware tasks such as editing and segmentation using 3D feature field distillation from 2D foundation models. However, these methods have two major limitations: (a) they are limited by the rendering speed of NeRF pipelines, and (b) implicitly represented feature fields suffer from continuity artifacts reducing feature quality. Recently, 3D Gaussian Splatting has shown state-of-the-art performance on real-time radiance field rendering. In this work, we go one step further: in addition to radiance field rendering, we enable 3D Gaussian splatting on arbitrary-dimension semantic features via 2D foundation model distillation. This translation is not straightforward: naively incorporating feature fields in the 3DGS framework encounters significant challenges, notably the disparities in spatial resolution and channel consistency between RGB images and feature maps. We propose architectural and training changes to efficiently avert this problem. Our proposed method is general, and our experiments showcase novel view semantic segmentation, language-guided editing and segment anything through learning feature fields from state-of-the-art 2D foundation models such as SAM and CLIP-LSeg. Across experiments, our distillation method is able to provide comparable or better results, while being significantly faster to both train and render. Additionally, to the best of our knowledge, we are the first method to enable point and bounding-box prompting for radiance field manipulation, by leveraging the SAM model. Project website at: https://feature-3dgs.github.io/
December 2023. https://arxiv.org/abs/2312.03203
160 StylizedGS: Controllable Stylization for 3D Gaussian Splatting Dingxi Zhang,Zhuoxun Chen,Yu-Jie Yuan,Fang-Lue Zhang,Zhenliang He,Shiguang Shan,Lin Gao
AbstractWith the rapid development of XR, 3D generation and editing are becoming more and more important, among which, stylization is an important tool of 3D appearance editing. It can achieve consistent 3D artistic stylization given a single reference style image and thus is a user-friendly editing way. However, recent NeRF-based 3D stylization methods face efficiency issues that affect the actual user experience and the implicit nature limits its ability to transfer the geometric pattern styles. Additionally, the ability for artists to exert flexible control over stylized scenes is considered highly desirable, fostering an environment conducive to creative exploration. In this paper, we introduce StylizedGS, a 3D neural style transfer framework with adaptable control over perceptual factors based on 3D Gaussian Splatting (3DGS) representation. The 3DGS brings the benefits of high efficiency. We propose a GS filter to eliminate floaters in the reconstruction which affects the stylization effects before stylization. Then the nearest neighbor-based style loss is introduced to achieve stylization by fine-tuning the geometry and color parameters of 3DGS, while a depth preservation loss with other regularizations is proposed to prevent the tampering of geometry content. Moreover, facilitated by specially designed losses, StylizedGS enables users to control color, stylized scale and regions during the stylization to possess customized capabilities. Our method can attain high-quality stylization results characterized by faithful brushstrokes and geometric consistency with flexible controls. Extensive experiments across various scenes and styles demonstrate the effectiveness and efficiency of our method concerning both stylization quality and inference FPS.
April 2024. https://arxiv.org/abs/2404.05220
159 OmniGS: Omnidirectional Gaussian Splatting for Fast Radiance Field Reconstruction using Omnidirectional Images Longwei Li,Huajian Huang,Sai-Kit Yeung,Hui Cheng
AbstractPhotorealistic reconstruction relying on 3D Gaussian Splatting has shown promising potential in robotics. However, the current 3D Gaussian Splatting system only supports radiance field reconstruction using undistorted perspective images. In this paper, we present OmniGS, a novel omnidirectional Gaussian splatting system, to take advantage of omnidirectional images for fast radiance field reconstruction. Specifically, we conduct a theoretical analysis of spherical camera model derivatives in 3D Gaussian Splatting. According to the derivatives, we then implement a new GPU-accelerated omnidirectional rasterizer that directly splats 3D Gaussians onto the equirectangular screen space for omnidirectional image rendering. As a result, we realize differentiable optimization of the radiance field without the requirement of cube-map rectification or tangent-plane approximation. Extensive experiments conducted in egocentric and roaming scenarios demonstrate that our method achieves state-of-the-art reconstruction quality and high rendering speed using omnidirectional images. To benefit the research community, the code will be made publicly available once the paper is published.
April 2024. https://arxiv.org/abs/2404.03202
158 Dual-Camera Smooth Zoom on Mobile Phones Renlong Wu,Zhilu Zhang,Yu Yang,Wangmeng Zuo
AbstractWhen zooming between dual cameras on a mobile, noticeable jumps in geometric content and image color occur in the preview, inevitably affecting the user's zoom experience. In this work, we introduce a new task, ie, dual-camera smooth zoom (DCSZ) to achieve a smooth zoom preview. The frame interpolation (FI) technique is a potential solution but struggles with ground-truth collection. To address the issue, we suggest a data factory solution where continuous virtual cameras are assembled to generate DCSZ data by rendering reconstructed 3D models of the scene. In particular, we propose a novel dual-camera smooth zoom Gaussian Splatting (ZoomGS), where a camera-specific encoding is introduced to construct a specific 3D model for each virtual camera. With the proposed data factory, we construct a synthetic dataset for DCSZ, and we utilize it to fine-tune FI models. In addition, we collect real-world dual-zoom images without ground-truth for evaluation. Extensive experiments are conducted with multiple FI methods. The results show that the fine-tuned FI models achieve a significant performance improvement over the original ones on DCSZ task. The datasets, codes, and pre-trained models will be publicly available.
April 2024. https://arxiv.org/abs/2404.04908
157 GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting Chi Yan,Delin Qu,Dan Xu,Bin Zhao,Zhigang Wang,Dong Wang,Xuelong Li
AbstractIn this paper, we introduce \textbf{GS-SLAM} that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping (SLAM) system. It facilitates a better balance between efficiency and accuracy. Compared to recent SLAM methods employing neural implicit representations, our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering. Specifically, we propose an adaptive expansion strategy that adds new or deletes noisy 3D Gaussians in order to efficiently reconstruct new observed scene geometry and improve the mapping of previously observed areas. This strategy is essential to extend 3D Gaussian representation to reconstruct the whole scene rather than synthesize a static object in existing methods. Moreover, in the pose tracking process, an effective coarse-to-fine technique is designed to select reliable 3D Gaussian representations to optimize camera pose, resulting in runtime reduction and robust estimation. Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets. Project page: https://gs-slam.github.io/.
November 2023. https://arxiv.org/abs/2311.11700
156 CityGaussian: Real-time High-quality Large-Scale Scene Rendering with Gaussians Yang Liu,He Guan,Chuanchen Luo,Lue Fan,Junran Peng,Zhaoxiang Zhang
AbstractThe advancement of real-time 3D scene reconstruction and novel view synthesis has been significantly propelled by 3D Gaussian Splatting (3DGS). However, effectively training large-scale 3DGS and rendering it in real-time across various scales remains challenging. This paper introduces CityGaussian (CityGS), which employs a novel divide-and-conquer training approach and Level-of-Detail (LoD) strategy for efficient large-scale 3DGS training and rendering. Specifically, the global scene prior and adaptive training data selection enables efficient training and seamless fusion. Based on fused Gaussian primitives, we generate different detail levels through compression, and realize fast rendering across various scales through the proposed block-wise detail levels selection and aggregation strategy. Extensive experimental results on large-scale scenes demonstrate that our approach attains state-of-theart rendering quality, enabling consistent real-time rendering of largescale scenes across vastly different scales. Our project page is available at https://dekuliutesla.github.io/citygs/.
April 2024. https://arxiv.org/abs/2404.01133
155 Z-Splat: Z-Axis Gaussian Splatting for Camera-Sonar Fusion Ziyuan Qu,Omkar Vengurlekar,Mohamad Qadri,Kevin Zhang,Michael Kaess,Christopher Metzler,Suren Jayasuriya,Adithya Pediredla
AbstractDifferentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for reconstructing 3D scenes. GS represents a scene as a set of 3D Gaussians with varying opacities and employs a computationally efficient splatting operation along with analytical derivatives to compute the 3D Gaussian parameters given scene images captured from various viewpoints. Unfortunately, capturing surround view ($360^{\circ}$ viewpoint) images is impossible or impractical in many real-world imaging scenarios, including underwater imaging, rooms inside a building, and autonomous navigation. In these restricted baseline imaging scenarios, the GS algorithm suffers from a well-known 'missing cone' problem, which results in poor reconstruction along the depth axis. In this manuscript, we demonstrate that using transient data (from sonars) allows us to address the missing cone problem by sampling high-frequency data along the depth axis. We extend the Gaussian splatting algorithms for two commonly used sonars and propose fusion algorithms that simultaneously utilize RGB camera data and sonar data. Through simulations, emulations, and hardware experiments across various imaging scenarios, we show that the proposed fusion algorithms lead to significantly better novel view synthesis (5 dB improvement in PSNR) and 3D geometry reconstruction (60% lower Chamfer distance).
April 2024. https://arxiv.org/abs/2404.04687
154 Robust Gaussian Splatting Fran\xc3\xa7ois Darmon,Lorenzo Porzi,Samuel Rota-Bul\xc3\xb2,Peter Kontschieder
AbstractIn this paper, we address common error sources for 3D Gaussian Splatting (3DGS) including blur, imperfect camera poses, and color inconsistencies, with the goal of improving its robustness for practical applications like reconstructions from handheld phone captures. Our main contribution involves modeling motion blur as a Gaussian distribution over camera poses, allowing us to address both camera pose refinement and motion blur correction in a unified way. Additionally, we propose mechanisms for defocus blur compensation and for addressing color in-consistencies caused by ambient light, shadows, or due to camera-related factors like varying white balancing settings. Our proposed solutions integrate in a seamless way with the 3DGS formulation while maintaining its benefits in terms of training efficiency and rendering speed. We experimentally validate our contributions on relevant benchmark datasets including Scannet++ and Deblur-NeRF, obtaining state-of-the-art results and thus consistent improvements over relevant baselines.
April 2024. https://arxiv.org/abs/2404.04211
153 SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians Hiba Dahmani,Moussab Bennehar,Nathan Piasco,Luis Roldao,Dzmitry Tsishkou
AbstractImplicit neural representation methods have shown impressive advancements in learning 3D scenes from unstructured in-the-wild photo collections but are still limited by the large computational cost of volumetric rendering. More recently, 3D Gaussian Splatting emerged as a much faster alternative with superior rendering quality and training efficiency, especially for small-scale and object-centric scenarios. Nevertheless, this technique suffers from poor performance on unstructured in-the-wild data. To tackle this, we extend over 3D Gaussian Splatting to handle unstructured image collections. We achieve this by modeling appearance to seize photometric variations in the rendered images. Additionally, we introduce a new mechanism to train transient Gaussians to handle the presence of scene occluders in an unsupervised manner. Experiments on diverse photo collection scenes and multi-pass acquisition of outdoor landmarks show the effectiveness of our method over prior works achieving state-of-the-art results with improved efficiency.
March 2024. https://arxiv.org/abs/2403.10427
152 GaussianCube: Structuring Gaussian Splatting using Optimal Transport for 3D Generative Modeling Bowen Zhang,Yiji Cheng,Jiaolong Yang,Chunyu Wang,Feng Zhao,Yansong Tang,Dong Chen,Baining Guo
Abstract3D Gaussian Splatting (GS) have achieved considerable improvement over Neural Radiance Fields in terms of 3D fitting fidelity and rendering speed. However, this unstructured representation with scattered Gaussians poses a significant challenge for generative modeling. To address the problem, we introduce GaussianCube, a structured GS representation that is both powerful and efficient for generative modeling. We achieve this by first proposing a modified densification-constrained GS fitting algorithm which can yield high-quality fitting results using a fixed number of free Gaussians, and then re-arranging the Gaussians into a predefined voxel grid via Optimal Transport. The structured grid representation allows us to use standard 3D U-Net as our backbone in diffusion generative modeling without elaborate designs. Extensive experiments conducted on ShapeNet and OmniObject3D show that our model achieves state-of-the-art generation results both qualitatively and quantitatively, underscoring the potential of GaussianCube as a powerful and versatile 3D representation.
March 2024. https://arxiv.org/abs/2403.19655
151 Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis Zhan Li,Zhang Chen,Zhong Li,Yi Xu
AbstractNovel view synthesis of dynamic scenes has been an intriguing yet challenging problem. Despite recent advancements, simultaneously achieving high-resolution photorealistic results, real-time rendering, and compact storage remains a formidable task. To address these challenges, we propose Spacetime Gaussian Feature Splatting as a novel dynamic scene representation, composed of three pivotal components. First, we formulate expressive Spacetime Gaussians by enhancing 3D Gaussians with temporal opacity and parametric motion/rotation. This enables Spacetime Gaussians to capture static, dynamic, as well as transient content within a scene. Second, we introduce splatted feature rendering, which replaces spherical harmonics with neural features. These features facilitate the modeling of view- and time-dependent appearance while maintaining small size. Third, we leverage the guidance of training error and coarse depth to sample new Gaussians in areas that are challenging to converge with existing pipelines. Experiments on several established real-world datasets demonstrate that our method achieves state-of-the-art rendering quality and speed, while retaining compact storage. At 8K resolution, our lite-version model can render at 60 FPS on an Nvidia RTX 4090 GPU. Our code is available at https://github.com/oppo-us-research/SpacetimeGaussians.
December 2023. https://arxiv.org/abs/2312.16812
150 pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction David Charatan,Sizhe Li,Andrea Tagliasacchi,Vincent Sitzmann
AbstractWe introduce pixelSplat, a feed-forward model that learns to reconstruct 3D radiance fields parameterized by 3D Gaussian primitives from pairs of images. Our model features real-time and memory-efficient rendering for scalable training as well as fast 3D reconstruction at inference time. To overcome local minima inherent to sparse and locally supported representations, we predict a dense probability distribution over 3D and sample Gaussian means from that probability distribution. We make this sampling operation differentiable via a reparameterization trick, allowing us to back-propagate gradients through the Gaussian splatting representation. We benchmark our method on wide-baseline novel view synthesis on the real-world RealEstate10k and ACID datasets, where we outperform state-of-the-art light field transformers and accelerate rendering by 2.5 orders of magnitude while reconstructing an interpretable and editable 3D radiance field.
December 2023. https://arxiv.org/abs/2312.12337
149 Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting Jeongmin Bae,Seoha Kim,Youngsik Yun,Hahyun Lee,Gun Bang,Youngjung Uh
AbstractAs 3D Gaussian Splatting (3DGS) provides fast and high-quality novel view synthesis, it is a natural extension to deform a canonical 3DGS to multiple frames. However, previous works fail to accurately reconstruct dynamic scenes, especially 1) static parts moving along nearby dynamic parts, and 2) some dynamic areas are blurry. We attribute the failure to the wrong design of the deformation field, which is built as a coordinate-based function. This approach is problematic because 3DGS is a mixture of multiple fields centered at the Gaussians, not just a single coordinate-based framework. To resolve this problem, we define the deformation as a function of per-Gaussian embeddings and temporal embeddings. Moreover, we decompose deformations as coarse and fine deformations to model slow and fast movements, respectively. Also, we introduce an efficient training strategy for faster convergence and higher quality. Project page: https://jeongminb.github.io/e-d3dgs/
April 2024. https://arxiv.org/abs/2404.03613
148 3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting Zhiyin Qian,Shaofei Wang,Marko Mihajlovic,Andreas Geiger,Siyu Tang
AbstractWe introduce an approach that creates animatable human avatars from monocular videos using 3D Gaussian Splatting (3DGS). Existing methods based on neural radiance fields (NeRFs) achieve high-quality novel-view/novel-pose image synthesis but often require days of training, and are extremely slow at inference time. Recently, the community has explored fast grid structures for efficient training of clothed avatars. Albeit being extremely fast at training, these methods can barely achieve an interactive rendering frame rate with around 15 FPS. In this paper, we use 3D Gaussian Splatting and learn a non-rigid deformation network to reconstruct animatable clothed human avatars that can be trained within 30 minutes and rendered at real-time frame rates (50+ FPS). Given the explicit nature of our representation, we further introduce as-isometric-as-possible regularizations on both the Gaussian mean vectors and the covariance matrices, enhancing the generalization of our model on highly articulated unseen poses. Experimental results show that our method achieves comparable and even better performance compared to state-of-the-art approaches on animatable avatar creation from a monocular input, while being 400x and 250x faster in training and inference, respectively.
December 2023. https://arxiv.org/abs/2312.09228
147 GaSpCT: Gaussian Splatting for Novel CT Projection View Synthesis Emmanouil Nikolakakis,Utkarsh Gupta,Jonathan Vengosh,Justin Bui,Razvan Marinescu
AbstractWe present GaSpCT, a novel view synthesis and 3D scene representation method used to generate novel projection views for Computer Tomography (CT) scans. We adapt the Gaussian Splatting framework to enable novel view synthesis in CT based on limited sets of 2D image projections and without the need for Structure from Motion (SfM) methodologies. Therefore, we reduce the total scanning duration and the amount of radiation dose the patient receives during the scan. We adapted the loss function to our use-case by encouraging a stronger background and foreground distinction using two sparsity promoting regularizers: a beta loss and a total variation (TV) loss. Finally, we initialize the Gaussian locations across the 3D space using a uniform prior distribution of where the brain's positioning would be expected to be within the field of view. We evaluate the performance of our model using brain CT scans from the Parkinson's Progression Markers Initiative (PPMI) dataset and demonstrate that the rendered novel views closely match the original projection views of the simulated scan, and have better performance than other implicit 3D scene representations methodologies. Furthermore, we empirically observe reduced training time compared to neural network based image synthesis for sparse-view CT image reconstruction. Finally, the memory requirements of the Gaussian Splatting representations are reduced by 17% compared to the equivalent voxel grid image representations.
April 2024. https://arxiv.org/abs/2404.03126
146 NEAT: Distilling 3D Wireframes from Neural Attraction Fields Nan Xue,Bin Tan,Yuxi Xiao,Liang Dong,Gui-Song Xia,Tianfu Wu,Yujun Shen
AbstractThis paper studies the problem of structured 3D reconstruction using wireframes that consist of line segments and junctions, focusing on the computation of structured boundary geometries of scenes. Instead of leveraging matching-based solutions from 2D wireframes (or line segments) for 3D wireframe reconstruction as done in prior arts, we present NEAT, a rendering-distilling formulation using neural fields to represent 3D line segments with 2D observations, and bipartite matching for perceiving and distilling of a sparse set of 3D global junctions. The proposed {NEAT} enjoys the joint optimization of the neural fields and the global junctions from scratch, using view-dependent 2D observations without precomputed cross-view feature matching. Comprehensive experiments on the DTU and BlendedMVS datasets demonstrate our NEAT's superiority over state-of-the-art alternatives for 3D wireframe reconstruction. Moreover, the distilled 3D global junctions by NEAT, are a better initialization than SfM points, for the recently-emerged 3D Gaussian Splatting for high-fidelity novel view synthesis using about 20 times fewer initial 3D points. Project page: \url{https://xuenan.net/neat}.
July 2023. https://arxiv.org/abs/2307.10206
145 Analytic-Splatting: Anti-Aliased 3D Gaussian Splatting via Analytic Integration Zhihao Liang,Qi Zhang,Wenbo Hu,Ying Feng,Lei Zhu,Kui Jia
AbstractThe 3D Gaussian Splatting (3DGS) gained its popularity recently by combining the advantages of both primitive-based and volumetric 3D representations, resulting in improved quality and efficiency for 3D scene rendering. However, 3DGS is not alias-free, and its rendering at varying resolutions could produce severe blurring or jaggies. This is because 3DGS treats each pixel as an isolated, single point rather than as an area, causing insensitivity to changes in the footprints of pixels. Consequently, this discrete sampling scheme inevitably results in aliasing, owing to the restricted sampling bandwidth. In this paper, we derive an analytical solution to address this issue. More specifically, we use a conditioned logistic function as the analytic approximation of the cumulative distribution function (CDF) in a one-dimensional Gaussian signal and calculate the Gaussian integral by subtracting the CDFs. We then introduce this approximation in the two-dimensional pixel shading, and present Analytic-Splatting, which analytically approximates the Gaussian integral within the 2D-pixel window area to better capture the intensity response of each pixel. Moreover, we use the approximated response of the pixel window integral area to participate in the transmittance calculation of volume rendering, making Analytic-Splatting sensitive to the changes in pixel footprint at different resolutions. Experiments on various datasets validate that our approach has better anti-aliasing capability that gives more details and better fidelity.
March 2024. https://arxiv.org/abs/2403.11056
144 HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression Yihang Chen,Qianyi Wu,Jianfei Cai,Mehrtash Harandi,Weiyao Lin
Abstract3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis, boasting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. To address this, we make use of the relations between the unorganized anchors and the structured hash grid, leveraging their mutual information for context modeling, and propose a Hash-grid Assisted Context (HAC) framework for highly compact 3DGS representation. Our approach introduces a binary hash grid to establish continuous spatial consistencies, allowing us to unveil the inherent spatial relations of anchors through a carefully designed context model. To facilitate entropy coding, we utilize Gaussian distributions to accurately estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Additionally, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Importantly, our work is the pioneer to explore context-based compression for 3DGS representation, resulting in a remarkable size reduction of over $75\times$ compared to vanilla 3DGS, while simultaneously improving fidelity, and achieving over $11\times$ size reduction over SOTA 3DGS compression approach Scaffold-GS. Our code is available here: https://github.com/YihangChen-ee/HAC
March 2024. https://arxiv.org/abs/2403.14530
143 TCLC-GS: Tightly Coupled LiDAR-Camera Gaussian Splatting for Surrounding Autonomous Driving Scenes Cheng Zhao,Su Sun,Ruoyu Wang,Yuliang Guo,Jun-Jun Wan,Zhou Huang,Xinyu Huang,Yingjie Victor Chen,Liu Ren
AbstractMost 3D Gaussian Splatting (3D-GS) based methods for urban scenes initialize 3D Gaussians directly with 3D LiDAR points, which not only underutilizes LiDAR data capabilities but also overlooks the potential advantages of fusing LiDAR with camera data. In this paper, we design a novel tightly coupled LiDAR-Camera Gaussian Splatting (TCLC-GS) to fully leverage the combined strengths of both LiDAR and camera sensors, enabling rapid, high-quality 3D reconstruction and novel view RGB/depth synthesis. TCLC-GS designs a hybrid explicit (colorized 3D mesh) and implicit (hierarchical octree feature) 3D representation derived from LiDAR-camera data, to enrich the properties of 3D Gaussians for splatting. 3D Gaussian's properties are not only initialized in alignment with the 3D mesh which provides more completed 3D shape and color information, but are also endowed with broader contextual information through retrieved octree implicit features. During the Gaussian Splatting optimization process, the 3D mesh offers dense depth information as supervision, which enhances the training process by learning of a robust geometry. Comprehensive evaluations conducted on the Waymo Open Dataset and nuScenes Dataset validate our method's state-of-the-art (SOTA) performance. Utilizing a single NVIDIA RTX 3090 Ti, our method demonstrates fast training and achieves real-time RGB and depth rendering at 90 FPS in resolution of 1920x1280 (Waymo), and 120 FPS in resolution of 1600x900 (nuScenes) in urban scenarios.
April 2024. https://arxiv.org/abs/2404.02410
142 Surface Reconstruction from Gaussian Splatting via Novel Stereo Views Yaniv Wolf,Amit Bracha,Ron Kimmel
AbstractThe Gaussian splatting for radiance field rendering method has recently emerged as an efficient approach for accurate scene representation. It optimizes the location, size, color, and shape of a cloud of 3D Gaussian elements to visually match, after projection, or splatting, a set of given images taken from various viewing directions. And yet, despite the proximity of Gaussian elements to the shape boundaries, direct surface reconstruction of objects in the scene is a challenge. We propose a novel approach for surface reconstruction from Gaussian splatting models. Rather than relying on the Gaussian elements' locations as a prior for surface reconstruction, we leverage the superior novel-view synthesis capabilities of 3DGS. To that end, we use the Gaussian splatting model to render pairs of stereo-calibrated novel views from which we extract depth profiles using a stereo matching method. We then combine the extracted RGB-D images into a geometrically consistent surface. The resulting reconstruction is more accurate and shows finer details when compared to other methods for surface reconstruction from Gaussian splatting models, while requiring significantly less compute time compared to other surface reconstruction methods. We performed extensive testing of the proposed method on in-the-wild scenes, taken by a smartphone, showcasing its superior reconstruction abilities. Additionally, we tested the proposed method on the Tanks and Temples benchmark, and it has surpassed the current leading method for surface reconstruction from Gaussian splatting models. Project page: https://gs2mesh.github.io/.
April 2024. https://arxiv.org/abs/2404.01810
141 Endo-4DGS: Endoscopic Monocular Scene Reconstruction with 4D Gaussian Splatting Yiming Huang,Beilei Cui,Long Bai,Ziqi Guo,Mengya Xu,Mobarakol Islam,Hongliang Ren
AbstractIn the realm of robot-assisted minimally invasive surgery, dynamic scene reconstruction can significantly enhance downstream tasks and improve surgical outcomes. Neural Radiance Fields (NeRF)-based methods have recently risen to prominence for their exceptional ability to reconstruct scenes but are hampered by slow inference speed, prolonged training, and inconsistent depth estimation. Some previous work utilizes ground truth depth for optimization but is hard to acquire in the surgical domain. To overcome these obstacles, we present Endo-4DGS, a real-time endoscopic dynamic reconstruction approach that utilizes 3D Gaussian Splatting (GS) for 3D representation. Specifically, we propose lightweight MLPs to capture temporal dynamics with Gaussian deformation fields. To obtain a satisfactory Gaussian Initialization, we exploit a powerful depth estimation foundation model, Depth-Anything, to generate pseudo-depth maps as a geometry prior. We additionally propose confidence-guided learning to tackle the ill-pose problems in monocular depth estimation and enhance the depth-guided reconstruction with surface normal constraints and depth regularization. Our approach has been validated on two surgical datasets, where it can effectively render in real-time, compute efficiently, and reconstruct with remarkable accuracy.
January 2024. https://arxiv.org/abs/2401.16416
140 Text-to-3D using Gaussian Splatting Zilong Chen,Feng Wang,Yikai Wang,Huaping Liu
AbstractAutomatic text-to-3D generation that combines Score Distillation Sampling (SDS) with the optimization of volume rendering has achieved remarkable progress in synthesizing realistic 3D objects. Yet most existing text-to-3D methods by SDS and volume rendering suffer from inaccurate geometry, e.g., the Janus issue, since it is hard to explicitly integrate 3D priors into implicit 3D representations. Besides, it is usually time-consuming for them to generate elaborate 3D models with rich colors. In response, this paper proposes GSGEN, a novel method that adopts Gaussian Splatting, a recent state-of-the-art representation, to text-to-3D generation. GSGEN aims at generating high-quality 3D objects and addressing existing shortcomings by exploiting the explicit nature of Gaussian Splatting that enables the incorporation of 3D prior. Specifically, our method adopts a progressive optimization strategy, which includes a geometry optimization stage and an appearance refinement stage. In geometry optimization, a coarse representation is established under 3D point cloud diffusion prior along with the ordinary 2D SDS optimization, ensuring a sensible and 3D-consistent rough shape. Subsequently, the obtained Gaussians undergo an iterative appearance refinement to enrich texture details. In this stage, we increase the number of Gaussians by compactness-based densification to enhance continuity and improve fidelity. With these designs, our approach can generate 3D assets with delicate details and accurate geometry. Extensive evaluations demonstrate the effectiveness of our method, especially for capturing high-frequency components. Our code is available at https://github.com/gsgen3d/gsgen
September 2023. https://arxiv.org/abs/2309.16585
139 NEDS-SLAM: A Novel Neural Explicit Dense Semantic SLAM Framework using 3D Gaussian Splatting Yiming Ji,Yang Liu,Guanghu Xie,Boyu Ma,Zongwu Xie
AbstractWe propose NEDS-SLAM, an Explicit Dense semantic SLAM system based on 3D Gaussian representation, that enables robust 3D semantic mapping, accurate camera tracking, and high-quality rendering in real-time. In the system, we propose a Spatially Consistent Feature Fusion model to reduce the effect of erroneous estimates from pre-trained segmentation head on semantic reconstruction, achieving robust 3D semantic Gaussian mapping. Additionally, we employ a lightweight encoder-decoder to compress the high-dimensional semantic features into a compact 3D Gaussian representation, mitigating the burden of excessive memory consumption. Furthermore, we leverage the advantage of 3D Gaussian splatting, which enables efficient and differentiable novel view rendering, and propose a Virtual Camera View Pruning method to eliminate outlier GS points, thereby effectively enhancing the quality of scene representations. Our NEDS-SLAM method demonstrates competitive performance over existing dense semantic SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in 3D dense semantic mapping.
March 2024. https://arxiv.org/abs/2403.11679
138 Feature Splatting: Language-Driven Physics-Based Scene Synthesis and Editing Ri-Zhao Qiu,Ge Yang,Weijia Zeng,Xiaolong Wang
AbstractScene representations using 3D Gaussian primitives have produced excellent results in modeling the appearance of static and dynamic 3D scenes. Many graphics applications, however, demand the ability to manipulate both the appearance and the physical properties of objects. We introduce Feature Splatting, an approach that unifies physics-based dynamic scene synthesis with rich semantics from vision language foundation models that are grounded by natural language. Our first contribution is a way to distill high-quality, object-centric vision-language features into 3D Gaussians, that enables semi-automatic scene decomposition using text queries. Our second contribution is a way to synthesize physics-based dynamics from an otherwise static scene using a particle-based simulator, in which material properties are assigned automatically via text queries. We ablate key techniques used in this pipeline, to illustrate the challenge and opportunities in using feature-carrying 3D Gaussians as a unified format for appearance, geometry, material properties and semantics grounded on natural language. Project website: https://feature-splatting.github.io/
April 2024. https://arxiv.org/abs/2404.01223
137 Mirror-3DGS: Incorporating Mirror Reflections into 3D Gaussian Splatting Jiarui Meng,Haijie Li,Yanmin Wu,Qiankun Gao,Shuzhou Yang,Jian Zhang,Siwei Ma
Abstract3D Gaussian Splatting (3DGS) has marked a significant breakthrough in the realm of 3D scene reconstruction and novel view synthesis. However, 3DGS, much like its predecessor Neural Radiance Fields (NeRF), struggles to accurately model physical reflections, particularly in mirrors that are ubiquitous in real-world scenes. This oversight mistakenly perceives reflections as separate entities that physically exist, resulting in inaccurate reconstructions and inconsistent reflective properties across varied viewpoints. To address this pivotal challenge, we introduce Mirror-3DGS, an innovative rendering framework devised to master the intricacies of mirror geometries and reflections, paving the way for the generation of realistically depicted mirror reflections. By ingeniously incorporating mirror attributes into the 3DGS and leveraging the principle of plane mirror imaging, Mirror-3DGS crafts a mirrored viewpoint to observe from behind the mirror, enriching the realism of scene renderings. Extensive assessments, spanning both synthetic and real-world scenes, showcase our method's ability to render novel views with enhanced fidelity in real-time, surpassing the state-of-the-art Mirror-NeRF specifically within the challenging mirror regions. Our code will be made publicly available for reproducible research.
April 2024. https://arxiv.org/abs/2404.01168
136 HAHA: Highly Articulated Gaussian Human Avatars with Textured Mesh Prior David Svitov,Pietro Morerio,Lourdes Agapito,Alessio Del Bue
AbstractWe present HAHA - a novel approach for animatable human avatar generation from monocular input videos. The proposed method relies on learning the trade-off between the use of Gaussian splatting and a textured mesh for efficient and high fidelity rendering. We demonstrate its efficiency to animate and render full-body human avatars controlled via the SMPL-X parametric model. Our model learns to apply Gaussian splatting only in areas of the SMPL-X mesh where it is necessary, like hair and out-of-mesh clothing. This results in a minimal number of Gaussians being used to represent the full avatar, and reduced rendering artifacts. This allows us to handle the animation of small body parts such as fingers that are traditionally disregarded. We demonstrate the effectiveness of our approach on two open datasets: SnapshotPeople and X-Humans. Our method demonstrates on par reconstruction quality to the state-of-the-art on SnapshotPeople, while using less than a third of Gaussians. HAHA outperforms previous state-of-the-art on novel poses from X-Humans both quantitatively and qualitatively.
April 2024. https://arxiv.org/abs/2404.01053
135 SemGauss-SLAM: Dense Semantic Gaussian Splatting SLAM Siting Zhu,Renjie Qin,Guangming Wang,Jiuming Liu,Hesheng Wang
AbstractWe propose SemGauss-SLAM, the first semantic SLAM system utilizing 3D Gaussian representation, that enables accurate 3D semantic mapping, robust camera tracking, and high-quality rendering in real-time. In this system, we incorporate semantic feature embedding into 3D Gaussian representation, which effectively encodes semantic information within the spatial layout of the environment for precise semantic scene representation. Furthermore, we propose feature-level loss for updating 3D Gaussian representation, enabling higher-level guidance for 3D Gaussian optimization. In addition, to reduce cumulative drift and improve reconstruction accuracy, we introduce semantic-informed bundle adjustment leveraging semantic associations for joint optimization of 3D Gaussian representation and camera poses, leading to more robust tracking and consistent mapping. Our SemGauss-SLAM method demonstrates superior performance over existing dense semantic SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in novel-view semantic synthesis and 3D semantic mapping.
March 2024. https://arxiv.org/abs/2403.07494
134 MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements Lisong C. Sun,Neel P. Bhatt,Jonathan C. Liu,Zhiwen Fan,Zhangyang Wang,Todd E. Humphreys,Ufuk Topcu
AbstractSimultaneous localization and mapping is essential for position tracking and scene understanding. 3D Gaussian-based map representations enable photorealistic reconstruction and real-time rendering of scenes using multiple posed cameras. We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM. Our method, MM3DGS, addresses the limitations of prior neural radiance field-based representations by enabling faster rendering, scale awareness, and improved trajectory tracking. Our framework enables keyframe-based mapping and tracking utilizing loss functions that incorporate relative pose transformations from pre-integrated inertial measurements, depth estimates, and measures of photometric rendering quality. We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit. Experimental evaluation on several scenes from the dataset shows that MM3DGS achieves 3x improvement in tracking and 5% improvement in photometric rendering quality compared to the current 3DGS SLAM state-of-the-art, while allowing real-time rendering of a high-resolution dense 3D map. Project Webpage: https://vita-group.github.io/MM3DGS-SLAM
April 2024. https://arxiv.org/abs/2404.00923
133 SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes Yi-Hua Huang,Yang-Tian Sun,Ziyi Yang,Xiaoyang Lyu,Yan-Pei Cao,Xiaojuan Qi
AbstractNovel view synthesis for dynamic scenes is still a challenging problem in computer vision and graphics. Recently, Gaussian splatting has emerged as a robust technique to represent static scenes and enable high-quality and real-time novel view synthesis. Building upon this technique, we propose a new representation that explicitly decomposes the motion and appearance of dynamic scenes into sparse control points and dense Gaussians, respectively. Our key idea is to use sparse control points, significantly fewer in number than the Gaussians, to learn compact 6 DoF transformation bases, which can be locally interpolated through learned interpolation weights to yield the motion field of 3D Gaussians. We employ a deformation MLP to predict time-varying 6 DoF transformations for each control point, which reduces learning complexities, enhances learning abilities, and facilitates obtaining temporal and spatial coherent motion patterns. Then, we jointly learn the 3D Gaussians, the canonical space locations of control points, and the deformation MLP to reconstruct the appearance, geometry, and dynamics of 3D scenes. During learning, the location and number of control points are adaptively adjusted to accommodate varying motion complexities in different regions, and an ARAP loss following the principle of as rigid as possible is developed to enforce spatial continuity and local rigidity of learned motions. Finally, thanks to the explicit sparse motion representation and its decomposition from appearance, our method can enable user-controlled motion editing while retaining high-fidelity appearances. Extensive experiments demonstrate that our approach outperforms existing approaches on novel view synthesis with a high rendering speed and enables novel appearance-preserved motion editing applications. Project page: https://yihua7.github.io/SC-GS-web/
December 2023. https://arxiv.org/abs/2312.14937
132 Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling Zhe Li,Zerong Zheng,Lizhen Wang,Yebin Liu
AbstractModeling animatable human avatars from RGB videos is a long-standing and challenging problem. Recent works usually adopt MLP-based neural radiance fields (NeRF) to represent 3D humans, but it remains difficult for pure MLPs to regress pose-dependent garment details. To this end, we introduce Animatable Gaussians, a new avatar representation that leverages powerful 2D CNNs and 3D Gaussian splatting to create high-fidelity avatars. To associate 3D Gaussians with the animatable avatar, we learn a parametric template from the input videos, and then parameterize the template on two front \& back canonical Gaussian maps where each pixel represents a 3D Gaussian. The learned template is adaptive to the wearing garments for modeling looser clothes like dresses. Such template-guided 2D parameterization enables us to employ a powerful StyleGAN-based CNN to learn the pose-dependent Gaussian maps for modeling detailed dynamic appearances. Furthermore, we introduce a pose projection strategy for better generalization given novel poses. Overall, our method can create lifelike avatars with dynamic, realistic and generalized appearances. Experiments show that our method outperforms other state-of-the-art approaches. Code: https://github.com/lizhe00/AnimatableGaussians
November 2023. https://arxiv.org/abs/2311.16096
131 LangSplat: 3D Language Gaussian Splatting Minghan Qin,Wanhua Li,Jiawei Zhou,Haoqian Wang,Hanspeter Pfister
AbstractHumans live in a 3D world and commonly use natural language to interact with a 3D scene. Modeling a 3D language field to support open-ended language queries in 3D has gained increasing attention recently. This paper introduces LangSplat, which constructs a 3D language field that enables precise and efficient open-vocabulary querying within 3D spaces. Unlike existing methods that ground CLIP language embeddings in a NeRF model, LangSplat advances the field by utilizing a collection of 3D Gaussians, each encoding language features distilled from CLIP, to represent the language field. By employing a tile-based splatting technique for rendering language features, we circumvent the costly rendering process inherent in NeRF. Instead of directly learning CLIP embeddings, LangSplat first trains a scene-wise language autoencoder and then learns language features on the scene-specific latent space, thereby alleviating substantial memory demands imposed by explicit modeling. Existing methods struggle with imprecise and vague 3D language fields, which fail to discern clear boundaries between objects. We delve into this issue and propose to learn hierarchical semantics using SAM, thereby eliminating the need for extensively querying the language field across various scales and the regularization of DINO features. Extensive experimental results show that LangSplat significantly outperforms the previous state-of-the-art method LERF by a large margin. Notably, LangSplat is extremely efficient, achieving a 199 $\times$ speedup compared to LERF at the resolution of 1440 $\times$ 1080. We strongly recommend readers to check out our video results at https://langsplat.github.io/
December 2023. https://arxiv.org/abs/2312.16084
130 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting Xiaoyang Lyu,Yang-Tian Sun,Yi-Hua Huang,Xiuzhe Wu,Ziyi Yang,Yilun Chen,Jiangmiao Pang,Xiaojuan Qi
AbstractIn this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR, that allows for accurate 3D reconstruction with intricate details while inheriting the high efficiency and rendering quality of 3DGS. The key insight is incorporating an implicit signed distance field (SDF) within 3D Gaussians to enable them to be aligned and jointly optimized. First, we introduce a differentiable SDF-to-opacity transformation function that converts SDF values into corresponding Gaussians' opacities. This function connects the SDF and 3D Gaussians, allowing for unified optimization and enforcing surface constraints on the 3D Gaussians. During learning, optimizing the 3D Gaussians provides supervisory signals for SDF learning, enabling the reconstruction of intricate details. However, this only provides sparse supervisory signals to the SDF at locations occupied by Gaussians, which is insufficient for learning a continuous SDF. Then, to address this limitation, we incorporate volumetric rendering and align the rendered geometric attributes (depth, normal) with those derived from 3D Gaussians. This consistency regularization introduces supervisory signals to locations not covered by discrete 3D Gaussians, effectively eliminating redundant surfaces outside the Gaussian sampling range. Our extensive experimental results demonstrate that our 3DGSR method enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS. Besides, our method competes favorably with leading surface reconstruction techniques while offering a more efficient learning process and much better rendering qualities. The code will be available at https://github.com/CVMI-Lab/3DGSR.
April 2024. https://arxiv.org/abs/2404.00409
129 SplatFace: Gaussian Splat Face Reconstruction Leveraging an Optimizable Surface Jiahao Luo,Jing Liu,James Davis
AbstractWe present SplatFace, a novel Gaussian splatting framework designed for 3D human face reconstruction without reliance on accurate pre-determined geometry. Our method is designed to simultaneously deliver both high-quality novel view rendering and accurate 3D mesh reconstructions. We incorporate a generic 3D Morphable Model (3DMM) to provide a surface geometric structure, making it possible to reconstruct faces with a limited set of input images. We introduce a joint optimization strategy that refines both the Gaussians and the morphable surface through a synergistic non-rigid alignment process. A novel distance metric, splat-to-surface, is proposed to improve alignment by considering both the Gaussian position and covariance. The surface information is also utilized to incorporate a world-space densification process, resulting in superior reconstruction quality. Our experimental analysis demonstrates that the proposed method is competitive with both other Gaussian splatting techniques in novel view synthesis and other 3D reconstruction methods in producing 3D face meshes with high geometric precision.
March 2024. https://arxiv.org/abs/2403.18784
128 LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS Zhiwen Fan,Kevin Wang,Kairun Wen,Zehao Zhu,Dejia Xu,Zhangyang Wang
AbstractRecent advancements in real-time neural rendering using point-based techniques have paved the way for the widespread adoption of 3D representations. However, foundational approaches like 3D Gaussian Splatting come with a substantial storage overhead caused by growing the SfM points to millions, often demanding gigabyte-level disk space for a single unbounded scene, posing significant scalability challenges and hindering the splatting efficiency. To address this challenge, we introduce LightGaussian, a novel method designed to transform 3D Gaussians into a more efficient and compact format. Drawing inspiration from the concept of Network Pruning, LightGaussian identifies Gaussians that are insignificant in contributing to the scene reconstruction and adopts a pruning and recovery process, effectively reducing redundancy in Gaussian counts while preserving visual effects. Additionally, LightGaussian employs distillation and pseudo-view augmentation to distill spherical harmonics to a lower degree, allowing knowledge transfer to more compact representations while maintaining reflectance. Furthermore, we propose a hybrid scheme, VecTree Quantization, to quantize all attributes, resulting in lower bitwidth representations with minimal accuracy losses. In summary, LightGaussian achieves an averaged compression rate over 15x while boosting the FPS from 139 to 215, enabling an efficient representation of complex scenes on Mip-NeRF 360, Tank and Temple datasets. Project website: https://lightgaussian.github.io/
November 2023. https://arxiv.org/abs/2311.17245
127 InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds Zhiwen Fan,Wenyan Cong,Kairun Wen,Kevin Wang,Jian Zhang,Xinghao Ding,Danfei Xu,Boris Ivanovic,Marco Pavone,Georgios Pavlakos,Zhangyang Wang,Yue Wang
AbstractWhile novel view synthesis (NVS) has made substantial progress in 3D computer vision, it typically requires an initial estimation of camera intrinsics and extrinsics from dense viewpoints. This pre-processing is usually conducted via a Structure-from-Motion (SfM) pipeline, a procedure that can be slow and unreliable, particularly in sparse-view scenarios with insufficient matched features for accurate reconstruction. In this work, we integrate the strengths of point-based representations (e.g., 3D Gaussian Splatting, 3D-GS) with end-to-end dense stereo models (DUSt3R) to tackle the complex yet unresolved issues in NVS under unconstrained settings, which encompasses pose-free and sparse view challenges. Our framework, InstantSplat, unifies dense stereo priors with 3D-GS to build 3D Gaussians of large-scale scenes from sparseview & pose-free images in less than 1 minute. Specifically, InstantSplat comprises a Coarse Geometric Initialization (CGI) module that swiftly establishes a preliminary scene structure and camera parameters across all training views, utilizing globally-aligned 3D point maps derived from a pre-trained dense stereo pipeline. This is followed by the Fast 3D-Gaussian Optimization (F-3DGO) module, which jointly optimizes the 3D Gaussian attributes and the initialized poses with pose regularization. Experiments conducted on the large-scale outdoor Tanks & Temples datasets demonstrate that InstantSplat significantly improves SSIM (by 32%) while concurrently reducing Absolute Trajectory Error (ATE) by 80%. These establish InstantSplat as a viable solution for scenarios involving posefree and sparse-view conditions. Project page: instantsplat.github.io.
March 2024. https://arxiv.org/abs/2403.20309
126 Snap-it, Tap-it, Splat-it: Tactile-Informed 3D Gaussian Splatting for Reconstructing Challenging Surfaces Mauro Comi,Alessio Tonioni,Max Yang,Jonathan Tremblay,Valts Blukis,Yijiong Lin,Nathan F. Lepora,Laurence Aitchison
AbstractTouch and vision go hand in hand, mutually enhancing our ability to understand the world. From a research perspective, the problem of mixing touch and vision is underexplored and presents interesting challenges. To this end, we propose Tactile-Informed 3DGS, a novel approach that incorporates touch data (local depth maps) with multi-view vision data to achieve surface reconstruction and novel view synthesis. Our method optimises 3D Gaussian primitives to accurately model the object's geometry at points of contact. By creating a framework that decreases the transmittance at touch locations, we achieve a refined surface reconstruction, ensuring a uniformly smooth depth map. Touch is particularly useful when considering non-Lambertian objects (e.g. shiny or reflective surfaces) since contemporary methods tend to fail to reconstruct with fidelity specular highlights. By combining vision and tactile sensing, we achieve more accurate geometry reconstructions with fewer images than prior methods. We conduct evaluation on objects with glossy and reflective surfaces and demonstrate the effectiveness of our approach, offering significant improvements in reconstruction quality.
March 2024. https://arxiv.org/abs/2403.20275
125 HGS-Mapping: Online Dense Mapping Using Hybrid Gaussian Representation in Urban Scenes Ke Wu,Kaizhao Zhang,Zhiwei Zhang,Shanshuai Yuan,Muer Tie,Julong Wei,Zijun Xu,Jieru Zhao,Zhongxue Gan,Wenchao Ding
AbstractOnline dense mapping of urban scenes forms a fundamental cornerstone for scene understanding and navigation of autonomous vehicles. Recent advancements in mapping methods are mainly based on NeRF, whose rendering speed is too slow to meet online requirements. 3D Gaussian Splatting (3DGS), with its rendering speed hundreds of times faster than NeRF, holds greater potential in online dense mapping. However, integrating 3DGS into a street-view dense mapping framework still faces two challenges, including incomplete reconstruction due to the absence of geometric information beyond the LiDAR coverage area and extensive computation for reconstruction in large urban scenes. To this end, we propose HGS-Mapping, an online dense mapping framework in unbounded large-scale scenes. To attain complete construction, our framework introduces Hybrid Gaussian Representation, which models different parts of the entire scene using Gaussians with distinct properties. Furthermore, we employ a hybrid Gaussian initialization mechanism and an adaptive update method to achieve high-fidelity and rapid reconstruction. To the best of our knowledge, we are the first to integrate Gaussian representation into online dense mapping of urban scenes. Our approach achieves SOTA reconstruction accuracy while only employing 66% number of Gaussians, leading to 20% faster reconstruction speed.
March 2024. https://arxiv.org/abs/2403.20159
124 SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior Zhongrui Yu,Haoran Wang,Jinze Yang,Hanzhang Wang,Zeke Xie,Yunfeng Cai,Jiale Cao,Zhong Ji,Mingming Sun
AbstractNovel View Synthesis (NVS) for street scenes play a critical role in the autonomous driving simulation. The current mainstream technique to achieve it is neural rendering, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). Although thrilling progress has been made, when handling street scenes, current methods struggle to maintain rendering quality at the viewpoint that deviates significantly from the training viewpoints. This issue stems from the sparse training views captured by a fixed camera on a moving vehicle. To tackle this problem, we propose a novel approach that enhances the capacity of 3DGS by leveraging prior from a Diffusion Model along with complementary multi-modal data. Specifically, we first fine-tune a Diffusion Model by adding images from adjacent frames as condition, meanwhile exploiting depth data from LiDAR point clouds to supply additional spatial information. Then we apply the Diffusion Model to regularize the 3DGS at unseen views during training. Experimental results validate the effectiveness of our method compared with current state-of-the-art models, and demonstrate its advance in rendering images from broader views.
March 2024. https://arxiv.org/abs/2403.20079
123 DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation Jiaxiang Tang,Jiawei Ren,Hang Zhou,Ziwei Liu,Gang Zeng
AbstractRecent advances in 3D content creation mostly leverage optimization-based 3D generation via score distillation sampling (SDS). Though promising results have been exhibited, these methods often suffer from slow per-sample optimization, limiting their practical usage. In this paper, we propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously. Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space. In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks. To further enhance the texture quality and facilitate downstream applications, we introduce an efficient algorithm to convert 3D Gaussians into textured meshes and apply a fine-tuning stage to refine the details. Extensive experiments demonstrate the superior efficiency and competitive generation quality of our proposed approach. Notably, DreamGaussian produces high-quality textured meshes in just 2 minutes from a single-view image, achieving approximately 10 times acceleration compared to existing methods.
September 2023. https://arxiv.org/abs/2309.16653
122 Gamba: Marry Gaussian Splatting with Mamba for single view 3D reconstruction Qiuhong Shen,Xuanyu Yi,Zike Wu,Pan Zhou,Hanwang Zhang,Shuicheng Yan,Xinchao Wang
AbstractWe tackle the challenge of efficiently reconstructing a 3D asset from a single image with growing demands for automated 3D content creation pipelines. Previous methods primarily rely on Score Distillation Sampling (SDS) and Neural Radiance Fields (NeRF). Despite their significant success, these approaches encounter practical limitations due to lengthy optimization and considerable memory usage. In this report, we introduce Gamba, an end-to-end amortized 3D reconstruction model from single-view images, emphasizing two main insights: (1) 3D representation: leveraging a large number of 3D Gaussians for an efficient 3D Gaussian splatting process; (2) Backbone design: introducing a Mamba-based sequential network that facilitates context-dependent reasoning and linear scalability with the sequence (token) length, accommodating a substantial number of Gaussians. Gamba incorporates significant advancements in data preprocessing, regularization design, and training methodologies. We assessed Gamba against existing optimization-based and feed-forward 3D generation approaches using the real-world scanned OmniObject3D dataset. Here, Gamba demonstrates competitive generation capabilities, both qualitatively and quantitatively, while achieving remarkable speed, approximately 0.6 second on a single NVIDIA A100 GPU.
March 2024. https://arxiv.org/abs/2403.18795
121 HO-Gaussian: Hybrid Optimization of 3D Gaussian Splatting for Urban Scenes Zhuopeng Li,Yilin Zhang,Chenming Wu,Jianke Zhu,Liangjun Zhang
AbstractThe rapid growth of 3D Gaussian Splatting (3DGS) has revolutionized neural rendering, enabling real-time production of high-quality renderings. However, the previous 3DGS-based methods have limitations in urban scenes due to reliance on initial Structure-from-Motion(SfM) points and difficulties in rendering distant, sky and low-texture areas. To overcome these challenges, we propose a hybrid optimization method named HO-Gaussian, which combines a grid-based volume with the 3DGS pipeline. HO-Gaussian eliminates the dependency on SfM point initialization, allowing for rendering of urban scenes, and incorporates the Point Densitification to enhance rendering quality in problematic regions during training. Furthermore, we introduce Gaussian Direction Encoding as an alternative for spherical harmonics in the rendering pipeline, which enables view-dependent color representation. To account for multi-camera systems, we introduce neural warping to enhance object consistency across different cameras. Experimental results on widely used autonomous driving datasets demonstrate that HO-Gaussian achieves photo-realistic rendering in real-time on multi-camera urban datasets.
March 2024. https://arxiv.org/abs/2403.20032
120 GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning Ye Yuan,Xueting Li,Yangyi Huang,Shalini De Mello,Koki Nagano,Jan Kautz,Umar Iqbal
AbstractGaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations. In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions, addressing the limitations (e.g., flexibility and efficiency) imposed by mesh or NeRF-based representations. However, a naive application of Gaussian splatting cannot generate high-quality animatable avatars and suffers from learning instability; it also cannot capture fine avatar geometries and often leads to degenerate body parts. To tackle these problems, we first propose a primitive-based 3D Gaussian representation where Gaussians are defined inside pose-driven primitives to facilitate animation. Second, to stabilize and amortize the learning of millions of Gaussians, we propose to use neural implicit fields to predict the Gaussian attributes (e.g., colors). Finally, to capture fine avatar geometries and extract detailed meshes, we propose a novel SDF-based implicit mesh learning approach for 3D Gaussians that regularizes the underlying geometries and extracts highly detailed textured meshes. Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts. GAvatar significantly surpasses existing methods in terms of both appearance and geometry quality, and achieves extremely fast rendering (100 fps) at 1K resolution.
December 2023. https://arxiv.org/abs/2312.11461
119 GauStudio: A Modular Framework for 3D Gaussian Splatting and Beyond Chongjie Ye,Yinyu Nie,Jiahao Chang,Yuantao Chen,Yihao Zhi,Xiaoguang Han
AbstractWe present GauStudio, a novel modular framework for modeling 3D Gaussian Splatting (3DGS) to provide standardized, plug-and-play components for users to easily customize and implement a 3DGS pipeline. Supported by our framework, we propose a hybrid Gaussian representation with foreground and skyball background models. Experiments demonstrate this representation reduces artifacts in unbounded outdoor scenes and improves novel view synthesis. Finally, we propose Gaussian Splatting Surface Reconstruction (GauS), a novel render-then-fuse approach for high-fidelity mesh reconstruction from 3DGS inputs without fine-tuning. Overall, our GauStudio framework, hybrid representation, and GauS approach enhance 3DGS modeling and rendering capabilities, enabling higher-quality novel view synthesis and surface reconstruction.
March 2024. https://arxiv.org/abs/2403.19632
118 SA-GS: Scale-Adaptive Gaussian Splatting for Training-Free Anti-Aliasing Xiaowei Song,Jv Zheng,Shiran Yuan,Huan-ang Gao,Jingwei Zhao,Xiang He,Weihao Gu,Hao Zhao
AbstractIn this paper, we present a Scale-adaptive method for Anti-aliasing Gaussian Splatting (SA-GS). While the state-of-the-art method Mip-Splatting needs modifying the training procedure of Gaussian splatting, our method functions at test-time and is training-free. Specifically, SA-GS can be applied to any pretrained Gaussian splatting field as a plugin to significantly improve the field's anti-alising performance. The core technique is to apply 2D scale-adaptive filters to each Gaussian during test time. As pointed out by Mip-Splatting, observing Gaussians at different frequencies leads to mismatches between the Gaussian scales during training and testing. Mip-Splatting resolves this issue using 3D smoothing and 2D Mip filters, which are unfortunately not aware of testing frequency. In this work, we show that a 2D scale-adaptive filter that is informed of testing frequency can effectively match the Gaussian scale, thus making the Gaussian primitive distribution remain consistent across different testing frequencies. When scale inconsistency is eliminated, sampling rates smaller than the scene frequency result in conventional jaggedness, and we propose to integrate the projected 2D Gaussian within each pixel during testing. This integration is actually a limiting case of super-sampling, which significantly improves anti-aliasing performance over vanilla Gaussian Splatting. Through extensive experiments using various settings and both bounded and unbounded scenes, we show SA-GS performs comparably with or better than Mip-Splatting. Note that super-sampling and integration are only effective when our scale-adaptive filtering is activated. Our codes, data and models are available at https://github.com/zsy1987/SA-GS.
March 2024. https://arxiv.org/abs/2403.19615
117 TOGS: Gaussian Splatting with Temporal Opacity Offset for Real-Time 4D DSA Rendering Shuai Zhang,Huangxuan Zhao,Zhenghong Zhou,Guanjun Wu,Chuansheng Zheng,Xinggang Wang,Wenyu Liu
AbstractFour-dimensional Digital Subtraction Angiography (4D DSA) is a medical imaging technique that provides a series of 2D images captured at different stages and angles during the process of contrast agent filling blood vessels. It plays a significant role in the diagnosis of cerebrovascular diseases. Improving the rendering quality and speed under sparse sampling is important for observing the status and location of lesions. The current methods exhibit inadequate rendering quality in sparse views and suffer from slow rendering speed. To overcome these limitations, we propose TOGS, a Gaussian splatting method with opacity offset over time, which can effectively improve the rendering quality and speed of 4D DSA. We introduce an opacity offset table for each Gaussian to model the temporal variations in the radiance of the contrast agent. By interpolating the opacity offset table, the opacity variation of the Gaussian at different time points can be determined. This enables us to render the 2D DSA image at that specific moment. Additionally, we introduced a Smooth loss term in the loss function to mitigate overfitting issues that may arise in the model when dealing with sparse view scenarios. During the training phase, we randomly prune Gaussians, thereby reducing the storage overhead of the model. The experimental results demonstrate that compared to previous methods, this model achieves state-of-the-art reconstruction quality under the same number of training views. Additionally, it enables real-time rendering while maintaining low storage overhead. The code will be publicly available.
March 2024. https://arxiv.org/abs/2403.19586
116 Human Gaussian Splatting: Real-time Rendering of Animatable Avatars Arthur Moreau,Jifei Song,Helisa Dhamo,Richard Shaw,Yiren Zhou,Eduardo P\xc3\xa9rez-Pellitero
AbstractThis work addresses the problem of real-time rendering of photorealistic human body avatars learned from multi-view videos. While the classical approaches to model and render virtual humans generally use a textured mesh, recent research has developed neural body representations that achieve impressive visual quality. However, these models are difficult to render in real-time and their quality degrades when the character is animated with body poses different than the training observations. We propose an animatable human model based on 3D Gaussian Splatting, that has recently emerged as a very efficient alternative to neural radiance fields. The body is represented by a set of gaussian primitives in a canonical space which is deformed with a coarse to fine approach that combines forward skinning and local non-rigid refinement. We describe how to learn our Human Gaussian Splatting (HuGS) model in an end-to-end fashion from multi-view observations, and evaluate it against the state-of-the-art approaches for novel pose synthesis of clothed body. Our method achieves 1.5 dB PSNR improvement over the state-of-the-art on THuman4 dataset while being able to render in real-time (80 fps for 512x512 resolution).
November 2023. https://arxiv.org/abs/2311.17113
115 MANUS: Markerless Grasp Capture using Articulated 3D Gaussians Chandradeep Pokhariya,Ishaan N Shah,Angela Xing,Zekun Li,Kefan Chen,Avinash Sharma,Srinath Sridhar
AbstractUnderstanding how we grasp objects with our hands has important applications in areas like robotics and mixed reality. However, this challenging problem requires accurate modeling of the contact between hands and objects. To capture grasps, existing methods use skeletons, meshes, or parametric models that does not represent hand shape accurately resulting in inaccurate contacts. We present MANUS, a method for Markerless Hand-Object Grasp Capture using Articulated 3D Gaussians. We build a novel articulated 3D Gaussians representation that extends 3D Gaussian splatting for high-fidelity representation of articulating hands. Since our representation uses Gaussian primitives, it enables us to efficiently and accurately estimate contacts between the hand and the object. For the most accurate results, our method requires tens of camera views that current datasets do not provide. We therefore build MANUS-Grasps, a new dataset that contains hand-object grasps viewed from 50+ cameras across 30+ scenes, 3 subjects, and comprising over 7M frames. In addition to extensive qualitative results, we also show that our method outperforms others on a quantitative contact evaluation method that uses paint transfer from the object to the hand.
December 2023. https://arxiv.org/abs/2312.02137
114 GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians Shenhan Qian,Tobias Kirschstein,Liam Schoneveld,Davide Davoli,Simon Giebenhain,Matthias Nie\xc3\x9fner
AbstractWe introduce GaussianAvatars, a new method to create photorealistic head avatars that are fully controllable in terms of expression, pose, and viewpoint. The core idea is a dynamic 3D representation based on 3D Gaussian splats that are rigged to a parametric morphable face model. This combination facilitates photorealistic rendering while allowing for precise animation control via the underlying parametric model, e.g., through expression transfer from a driving sequence or by manually changing the morphable model parameters. We parameterize each splat by a local coordinate frame of a triangle and optimize for explicit displacement offset to obtain a more accurate geometric representation. During avatar reconstruction, we jointly optimize for the morphable model parameters and Gaussian splat parameters in an end-to-end fashion. We demonstrate the animation capabilities of our photorealistic avatar in several challenging scenarios. For instance, we show reenactments from a driving video, where our method outperforms existing works by a significant margin.
December 2023. https://arxiv.org/abs/2312.02069
113 CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians Avinash Paliwal,Wei Ye,Jinhui Xiong,Dmytro Kotovenko,Rakesh Ranjan,Vikas Chandra,Nima Khademi Kalantari
AbstractThe field of 3D reconstruction from images has rapidly evolved in the past few years, first with the introduction of Neural Radiance Field (NeRF) and more recently with 3D Gaussian Splatting (3DGS). The latter provides a significant edge over NeRF in terms of the training and inference speed, as well as the reconstruction quality. Although 3DGS works well for dense input images, the unstructured point-cloud like representation quickly overfits to the more challenging setup of extremely sparse input images (e.g., 3 images), creating a representation that appears as a jumble of needles from novel views. To address this issue, we propose regularized optimization and depth-based initialization. Our key idea is to introduce a structured Gaussian representation that can be controlled in 2D image space. We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization. Specifically, we introduce single and multiview constraints through an implicit convolutional decoder and a total variation loss, respectively. With the coherency introduced to the Gaussians, we further constrain the optimization through a flow-based loss function. To support our regularized optimization, we propose an approach to initialize the Gaussians using monocular depth estimates at each input view. We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
March 2024. https://arxiv.org/abs/2403.19495
112 GS-IR: 3D Gaussian Splatting for Inverse Rendering Zhihao Liang,Qi Zhang,Ying Feng,Ying Shan,Kui Jia
AbstractWe propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS) that leverages forward mapping volume rendering to achieve photorealistic novel view synthesis and relighting results. Unlike previous works that use implicit neural representations and volume rendering (e.g. NeRF), which suffer from low expressive power and high computational complexity, we extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions. There are two main problems when introducing GS to inverse rendering: 1) GS does not support producing plausible normal natively; 2) forward mapping (e.g. rasterization and splatting) cannot trace the occlusion like backward mapping (e.g. ray tracing). To address these challenges, our GS-IR proposes an efficient optimization scheme that incorporates a depth-derivation-based regularization for normal estimation and a baking-based occlusion to model indirect lighting. The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering. We demonstrate the superiority of our method over baseline methods through qualitative and quantitative evaluations on various challenging scenes.
November 2023. https://arxiv.org/abs/2311.16473
111 Modeling uncertainty for Gaussian Splatting Luca Savant,Diego Valsesia,Enrico Magli
AbstractWe present Stochastic Gaussian Splatting (SGS): the first framework for uncertainty estimation using Gaussian Splatting (GS). GS recently advanced the novel-view synthesis field by achieving impressive reconstruction quality at a fraction of the computational cost of Neural Radiance Fields (NeRF). However, contrary to the latter, it still lacks the ability to provide information about the confidence associated with their outputs. To address this limitation, in this paper, we introduce a Variational Inference-based approach that seamlessly integrates uncertainty prediction into the common rendering pipeline of GS. Additionally, we introduce the Area Under Sparsification Error (AUSE) as a new term in the loss function, enabling optimization of uncertainty estimation alongside image reconstruction. Experimental results on the LLFF dataset demonstrate that our method outperforms existing approaches in terms of both image rendering quality and uncertainty estimation accuracy. Overall, our framework equips practitioners with valuable insights into the reliability of synthesized views, facilitating safer decision-making in real-world applications.
March 2024. https://arxiv.org/abs/2403.18476
110 Fast Dynamic 3D Object Generation from a Single-view Video Zijie Pan,Zeyu Yang,Xiatian Zhu,Li Zhang
AbstractGenerating dynamic 3D object from a single-view video is challenging due to the lack of 4D labeled data. Extending image-to-3D pipelines by transferring off-the-shelf image generation models such as score distillation sampling, existing methods tend to be slow and expensive to scale due to the need for back-propagating the information-limited supervision signals through a large pretrained model. To address this, we propose an efficient video-to-4D object generation framework called Efficient4D. It generates high-quality spacetime-consistent images under different camera views, and then uses them as labeled data to directly train a novel 4D Gaussian splatting model with explicit point cloud geometry, enabling real-time rendering under continuous camera trajectories. Extensive experiments on synthetic and real videos show that Efficient4D offers a remarkable 20-fold increase in speed when compared to prior art alternatives while preserving the quality of novel view synthesis. For example, Efficient4D takes only 6 mins to model a dynamic object, vs 120 mins by Consistent4D.
January 2024. https://arxiv.org/abs/2401.08742
109 Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians Kerui Ren,Lihan Jiang,Tao Lu,Mulin Yu,Linning Xu,Zhangkai Ni,Bo Dai
AbstractThe recent 3D Gaussian splatting (3D-GS) has shown remarkable rendering fidelity and efficiency compared to NeRF-based neural scene representations. While demonstrating the potential for real-time rendering, 3D-GS encounters rendering bottlenecks in large scenes with complex details due to an excessive number of Gaussian primitives located within the viewing frustum. This limitation is particularly noticeable in zoom-out views and can lead to inconsistent rendering speeds in scenes with varying details. Moreover, it often struggles to capture the corresponding level of details at different scales with its heuristic density control operation. Inspired by the Level-of-Detail (LOD) techniques, we introduce Octree-GS, featuring an LOD-structured 3D Gaussian approach supporting level-of-detail decomposition for scene representation that contributes to the final rendering results. Our model dynamically selects the appropriate level from the set of multi-resolution anchor points, ensuring consistent rendering performance with adaptive LOD adjustments while maintaining high-fidelity rendering results.
March 2024. https://arxiv.org/abs/2403.17898
108 2D Gaussian Splatting for Geometrically Accurate Radiance Fields Binbin Huang,Zehao Yu,Anpei Chen,Andreas Geiger,Shenghua Gao
Abstract3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking. However, 3DGS fails to accurately represent surfaces due to the multi-view inconsistent nature of 3D Gaussians. We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images. Our key idea is to collapse the 3D volume into a set of 2D oriented planar Gaussian disks. Unlike 3D Gaussians, 2D Gaussians provide view-consistent geometry while modeling surfaces intrinsically. To accurately recover thin surfaces and achieve stable optimization, we introduce a perspective-accurate 2D splatting process utilizing ray-splat intersection and rasterization. Additionally, we incorporate depth distortion and normal consistency terms to further enhance the quality of the reconstructions. We demonstrate that our differentiable renderer allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering. Our code will be made publicly available.
March 2024. https://arxiv.org/abs/2403.17888
107 TRIPS: Trilinear Point Splatting for Real-Time Radiance Field Rendering Linus Franke,Darius R\xc3\xbcckert,Laura Fink,Marc Stamminger
AbstractPoint-based radiance field rendering has demonstrated impressive results for novel view synthesis, offering a compelling blend of rendering quality and computational efficiency. However, also latest approaches in this domain are not without their shortcomings. 3D Gaussian Splatting [Kerbl and Kopanas et al. 2023] struggles when tasked with rendering highly detailed scenes, due to blurring and cloudy artifacts. On the other hand, ADOP [R\xc3\xbcckert et al. 2022] can accommodate crisper images, but the neural reconstruction network decreases performance, it grapples with temporal instability and it is unable to effectively address large gaps in the point cloud. In this paper, we present TRIPS (Trilinear Point Splatting), an approach that combines ideas from both Gaussian Splatting and ADOP. The fundamental concept behind our novel technique involves rasterizing points into a screen-space image pyramid, with the selection of the pyramid layer determined by the projected point size. This approach allows rendering arbitrarily large points using a single trilinear write. A lightweight neural network is then used to reconstruct a hole-free image including detail beyond splat resolution. Importantly, our render pipeline is entirely differentiable, allowing for automatic optimization of both point sizes and positions. Our evaluation demonstrate that TRIPS surpasses existing state-of-the-art methods in terms of rendering quality while maintaining a real-time frame rate of 60 frames per second on readily available hardware. This performance extends to challenging scenarios, such as scenes featuring intricate geometry, expansive landscapes, and auto-exposed footage. The project page is located at: https://lfranke.github.io/trips/
January 2024. https://arxiv.org/abs/2401.06003
106 DN-Splatter: Depth and Normal Priors for Gaussian Splatting and Meshing Matias Turkulainen,Xuqian Ren,Iaroslav Melekhov,Otto Seiskari,Esa Rahtu,Juho Kannala
Abstract3D Gaussian splatting, a novel differentiable rendering technique, has achieved state-of-the-art novel view synthesis results with high rendering speeds and relatively low training times. However, its performance on scenes commonly seen in indoor datasets is poor due to the lack of geometric constraints during optimization. We extend 3D Gaussian splatting with depth and normal cues to tackle challenging indoor datasets and showcase techniques for efficient mesh extraction, an important downstream application. Specifically, we regularize the optimization procedure with depth information, enforce local smoothness of nearby Gaussians, and use the geometry of the 3D Gaussians supervised by normal cues to achieve better alignment with the true scene geometry. We improve depth estimation and novel view synthesis results over baselines and show how this simple yet effective regularization technique can be used to directly extract meshes from the Gaussian representation yielding more physically accurate reconstructions on indoor scenes. Our code will be released in https://github.com/maturk/dn-splatter.
March 2024. https://arxiv.org/abs/2403.17822
105 SGS-SLAM: Semantic Gaussian Splatting For Neural Dense SLAM Mingrui Li,Shuhong Liu,Heng Zhou,Guohao Zhu,Na Cheng,Tianchen Deng,Hongyu Wang
AbstractWe present SGS-SLAM, the first semantic visual SLAM system based on Gaussian Splatting. It incorporates appearance, geometry, and semantic features through multi-channel optimization, addressing the oversmoothing limitations of neural implicit SLAM systems in high-quality rendering, scene understanding, and object-level geometry. We introduce a unique semantic feature loss that effectively compensates for the shortcomings of traditional depth and color losses in object optimization. Through a semantic-guided keyframe selection strategy, we prevent erroneous reconstructions caused by cumulative errors. Extensive experiments demonstrate that SGS-SLAM delivers state-of-the-art performance in camera pose estimation, map reconstruction, precise semantic segmentation, and object-level geometric accuracy, while ensuring real-time rendering capabilities.
February 2024. https://arxiv.org/abs/2402.03246
104 DreamPolisher: Towards High-Quality Text-to-3D Generation via Geometric Diffusion Yuanze Lin,Ronald Clark,Philip Torr
AbstractWe present DreamPolisher, a novel Gaussian Splatting based method with geometric guidance, tailored to learn cross-view consistency and intricate detail from textual descriptions. While recent progress on text-to-3D generation methods have been promising, prevailing methods often fail to ensure view-consistency and textural richness. This problem becomes particularly noticeable for methods that work with text input alone. To address this, we propose a two-stage Gaussian Splatting based approach that enforces geometric consistency among views. Initially, a coarse 3D generation undergoes refinement via geometric optimization. Subsequently, we use a ControlNet driven refiner coupled with the geometric consistency term to improve both texture fidelity and overall consistency of the generated 3D asset. Empirical evaluations across diverse textual prompts spanning various object categories demonstrate the efficacy of DreamPolisher in generating consistent and realistic 3D objects, aligning closely with the semantics of the textual instructions.
March 2024. https://arxiv.org/abs/2403.17237
103 GSDF: 3DGS Meets SDF for Improved Rendering and Reconstruction Mulin Yu,Tao Lu,Linning Xu,Lihan Jiang,Yuanbo Xiangli,Bo Dai
AbstractPresenting a 3D scene from multiview images remains a core and long-standing challenge in computer vision and computer graphics. Two main requirements lie in rendering and reconstruction. Notably, SOTA rendering quality is usually achieved with neural volumetric rendering techniques, which rely on aggregated point/primitive-wise color and neglect the underlying scene geometry. Learning of neural implicit surfaces is sparked from the success of neural rendering. Current works either constrain the distribution of density fields or the shape of primitives, resulting in degraded rendering quality and flaws on the learned scene surfaces. The efficacy of such methods is limited by the inherent constraints of the chosen neural representation, which struggles to capture fine surface details, especially for larger, more intricate scenes. To address these issues, we introduce GSDF, a novel dual-branch architecture that combines the benefits of a flexible and efficient 3D Gaussian Splatting (3DGS) representation with neural Signed Distance Fields (SDF). The core idea is to leverage and enhance the strengths of each branch while alleviating their limitation through mutual guidance and joint supervision. We show on diverse scenes that our design unlocks the potential for more accurate and detailed surface reconstructions, and at the meantime benefits 3DGS rendering with structures that are more aligned with the underlying geometry.
March 2024. https://arxiv.org/abs/2403.16964
102 Differentiable Point-based Inverse Rendering Hoon-Gyu Chung,Seokjun Choi,Seung-Hwan Baek
AbstractWe present differentiable point-based inverse rendering, DPIR, an analysis-by-synthesis method that processes images captured under diverse illuminations to estimate shape and spatially-varying BRDF. To this end, we adopt point-based rendering, eliminating the need for multiple samplings per ray, typical of volumetric rendering, thus significantly enhancing the speed of inverse rendering. To realize this idea, we devise a hybrid point-volumetric representation for geometry and a regularized basis-BRDF representation for reflectance. The hybrid geometric representation enables fast rendering through point-based splatting while retaining the geometric details and stability inherent to SDF-based representations. The regularized basis-BRDF mitigates the ill-posedness of inverse rendering stemming from limited light-view angular samples. We also propose an efficient shadow detection method using point-based shadow map rendering. Our extensive evaluations demonstrate that DPIR outperforms prior works in terms of reconstruction accuracy, computational efficiency, and memory footprint. Furthermore, our explicit point-based representation and rendering enables intuitive geometry and reflectance editing.
December 2023. https://arxiv.org/abs/2312.02480
101 latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction Christopher Wewer,Kevin Raj,Eddy Ilg,Bernt Schiele,Jan Eric Lenssen
AbstractWe present latentSplat, a method to predict semantic Gaussians in a 3D latent space that can be splatted and decoded by a light-weight generative 2D architecture. Existing methods for generalizable 3D reconstruction either do not enable fast inference of high resolution novel views due to slow volume rendering, or are limited to interpolation of close input views, even in simpler settings with a single central object, where 360-degree generalization is possible. In this work, we combine a regression-based approach with a generative model, moving towards both of these capabilities within the same method, trained purely on readily available real video data. The core of our method are variational 3D Gaussians, a representation that efficiently encodes varying uncertainty within a latent space consisting of 3D feature Gaussians. From these Gaussians, specific instances can be sampled and rendered via efficient Gaussian splatting and a fast, generative decoder network. We show that latentSplat outperforms previous works in reconstruction quality and generalization, while being fast and scalable to high-resolution data.
March 2024. https://arxiv.org/abs/2403.16292
100 BAGS: Blur Agnostic Gaussian Splatting through Multi-Scale Kernel Modeling Cheng Peng,Yutao Tang,Yifan Zhou,Nengyu Wang,Xijun Liu,Deming Li,Rama Chellappa
AbstractRecent efforts in using 3D Gaussians for scene reconstruction and novel view synthesis can achieve impressive results on curated benchmarks; however, images captured in real life are often blurry. In this work, we analyze the robustness of Gaussian-Splatting-based methods against various image blur, such as motion blur, defocus blur, downscaling blur, \etc. Under these degradations, Gaussian-Splatting-based methods tend to overfit and produce worse results than Neural-Radiance-Field-based methods. To address this issue, we propose Blur Agnostic Gaussian Splatting (BAGS). BAGS introduces additional 2D modeling capacities such that a 3D-consistent and high quality scene can be reconstructed despite image-wise blur. Specifically, we model blur by estimating per-pixel convolution kernels from a Blur Proposal Network (BPN). BPN is designed to consider spatial, color, and depth variations of the scene to maximize modeling capacity. Additionally, BPN also proposes a quality-assessing mask, which indicates regions where blur occur. Finally, we introduce a coarse-to-fine kernel optimization scheme; this optimization scheme is fast and avoids sub-optimal solutions due to a sparse point cloud initialization, which often occurs when we apply Structure-from-Motion on blurry images. We demonstrate that BAGS achieves photorealistic renderings under various challenging blur conditions and imaging geometry, while significantly improving upon existing approaches.
March 2024. https://arxiv.org/abs/2403.04926
99 DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with Global-Local Depth Normalization Jiahe Li,Jiawei Zhang,Xiao Bai,Jin Zheng,Xin Ning,Jun Zhou,Lin Gu
AbstractRadiance fields have demonstrated impressive performance in synthesizing novel views from sparse input views, yet prevailing methods suffer from high training costs and slow inference speed. This paper introduces DNGaussian, a depth-regularized framework based on 3D Gaussian radiance fields, offering real-time and high-quality few-shot novel view synthesis at low costs. Our motivation stems from the highly efficient representation and surprising quality of the recent 3D Gaussian Splatting, despite it will encounter a geometry degradation when input views decrease. In the Gaussian radiance fields, we find this degradation in scene geometry primarily lined to the positioning of Gaussian primitives and can be mitigated by depth constraint. Consequently, we propose a Hard and Soft Depth Regularization to restore accurate scene geometry under coarse monocular depth supervision while maintaining a fine-grained color appearance. To further refine detailed geometry reshaping, we introduce Global-Local Depth Normalization, enhancing the focus on small local depth changes. Extensive experiments on LLFF, DTU, and Blender datasets demonstrate that DNGaussian outperforms state-of-the-art methods, achieving comparable or better results with significantly reduced memory cost, a $25 \times$ reduction in training time, and over $3000 \times$ faster rendering speed.
March 2024. https://arxiv.org/abs/2403.06912
98 CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-aware 3D Gaussian Field Jiarui Hu,Xianhao Chen,Boyin Feng,Guanglin Li,Liangjing Yang,Hujun Bao,Guofeng Zhang,Zhaopeng Cui
AbstractRecently neural radiance fields (NeRF) have been widely exploited as 3D representations for dense simultaneous localization and mapping (SLAM). Despite their notable successes in surface modeling and novel view synthesis, existing NeRF-based methods are hindered by their computationally intensive and time-consuming volume rendering pipeline. This paper presents an efficient dense RGB-D SLAM system, i.e., CG-SLAM, based on a novel uncertainty-aware 3D Gaussian field with high consistency and geometric stability. Through an in-depth analysis of Gaussian Splatting, we propose several techniques to construct a consistent and stable 3D Gaussian field suitable for tracking and mapping. Additionally, a novel depth uncertainty model is proposed to ensure the selection of valuable Gaussian primitives during optimization, thereby improving tracking efficiency and accuracy. Experiments on various datasets demonstrate that CG-SLAM achieves superior tracking and mapping performance with a notable tracking speed of up to 15 Hz. We will make our source code publicly available. Project page: https://zju3dv.github.io/cg-slam.
March 2024. https://arxiv.org/abs/2403.16095
97 Gaussian in the Wild: 3D Gaussian Splatting for Unconstrained Image Collections Dongbin Zhang,Chuming Wang,Weitao Wang,Peihao Li,Minghan Qin,Haoqian Wang
AbstractNovel view synthesis from unconstrained in-the-wild images remains a meaningful but challenging task. The photometric variation and transient occluders in those unconstrained images make it difficult to reconstruct the original scene accurately. Previous approaches tackle the problem by introducing a global appearance feature in Neural Radiance Fields (NeRF). However, in the real world, the unique appearance of each tiny point in a scene is determined by its independent intrinsic material attributes and the varying environmental impacts it receives. Inspired by this fact, we propose Gaussian in the wild (GS-W), a method that uses 3D Gaussian points to reconstruct the scene and introduces separated intrinsic and dynamic appearance feature for each point, capturing the unchanged scene appearance along with dynamic variation like illumination and weather. Additionally, an adaptive sampling strategy is presented to allow each Gaussian point to focus on the local and detailed information more effectively. We also reduce the impact of transient occluders using a 2D visibility map. More experiments have demonstrated better reconstruction quality and details of GS-W compared to previous methods, with a $1000\times$ increase in rendering speed.
March 2024. https://arxiv.org/abs/2403.15704
96 Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting Jun Guo,Xiaojian Ma,Yue Fan,Huaping Liu,Qing Li
AbstractOpen-vocabulary 3D scene understanding presents a significant challenge in computer vision, withwide-ranging applications in embodied agents and augmented reality systems. Previous approaches haveadopted Neural Radiance Fields (NeRFs) to analyze 3D scenes. In this paper, we introduce SemanticGaussians, a novel open-vocabulary scene understanding approach based on 3D Gaussian Splatting. Our keyidea is distilling pre-trained 2D semantics into 3D Gaussians. We design a versatile projection approachthat maps various 2Dsemantic features from pre-trained image encoders into a novel semantic component of 3D Gaussians, withoutthe additional training required by NeRFs. We further build a 3D semantic network that directly predictsthe semantic component from raw 3D Gaussians for fast inference. We explore several applications ofSemantic Gaussians: semantic segmentation on ScanNet-20, where our approach attains a 4.2% mIoU and 4.0%mAcc improvement over prior open-vocabulary scene understanding counterparts; object part segmentation,sceneediting, and spatial-temporal segmentation with better qualitative results over 2D and 3D baselines,highlighting its versatility and effectiveness on supporting diverse downstream tasks.
March 2024. https://arxiv.org/abs/2403.15624
95 Pixel-GS: Density Control with Pixel-aware Gradient for 3D Gaussian Splatting Zheng Zhang,Wenbo Hu,Yixing Lao,Tong He,Hengshuang Zhao
Abstract3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis results while advancing real-time rendering performance. However, it relies heavily on the quality of the initial point cloud, resulting in blurring and needle-like artifacts in areas with insufficient initializing points. This is mainly attributed to the point cloud growth condition in 3DGS that only considers the average gradient magnitude of points from observable views, thereby failing to grow for large Gaussians that are observable for many viewpoints while many of them are only covered in the boundaries. To this end, we propose a novel method, named Pixel-GS, to take into account the number of pixels covered by the Gaussian in each view during the computation of the growth condition. We regard the covered pixel numbers as the weights to dynamically average the gradients from different views, such that the growth of large Gaussians can be prompted. As a result, points within the areas with insufficient initializing points can be grown more effectively, leading to a more accurate and detailed reconstruction. In addition, we propose a simple yet effective strategy to scale the gradient field according to the distance to the camera, to suppress the growth of floaters near the camera. Extensive experiments both qualitatively and quantitatively demonstrate that our method achieves state-of-the-art rendering quality while maintaining real-time rendering speed, on the challenging Mip-NeRF 360 and Tanks & Temples datasets.
March 2024. https://arxiv.org/abs/2403.15530
94 Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting Vladimir Yugay,Yue Li,Theo Gevers,Martin R. Oswald
AbstractWe present a dense simultaneous localization and mapping (SLAM) method that uses 3D Gaussians as a scene representation. Our approach enables interactive-time reconstruction and photo-realistic rendering from real-world single-camera RGBD videos. To this end, we propose a novel effective strategy for seeding new Gaussians for newly explored areas and their effective online optimization that is independent of the scene size and thus scalable to larger scenes. This is achieved by organizing the scene into sub-maps which are independently optimized and do not need to be kept in memory. We further accomplish frame-to-model camera tracking by minimizing photometric and geometric losses between the input and rendered frames. The Gaussian representation allows for high-quality photo-realistic real-time rendering of real-world scenes. Evaluation on synthetic and real-world datasets demonstrates competitive or superior performance in mapping, tracking, and rendering compared to existing neural dense SLAM methods.
December 2023. https://arxiv.org/abs/2312.10070
93 RGBD GS-ICP SLAM Seongbo Ha,Jiung Yeon,Hyeonwoo Yu
AbstractSimultaneous Localization and Mapping (SLAM) with dense representation plays a key role in robotics, Virtual Reality (VR), and Augmented Reality (AR) applications. Recent advancements in dense representation SLAM have highlighted the potential of leveraging neural scene representation and 3D Gaussian representation for high-fidelity spatial representation. In this paper, we propose a novel dense representation SLAM approach with a fusion of Generalized Iterative Closest Point (G-ICP) and 3D Gaussian Splatting (3DGS). In contrast to existing methods, we utilize a single Gaussian map for both tracking and mapping, resulting in mutual benefits. Through the exchange of covariances between tracking and mapping processes with scale alignment techniques, we minimize redundant computations and achieve an efficient system. Additionally, we enhance tracking accuracy and mapping quality through our keyframe selection methods. Experimental results demonstrate the effectiveness of our approach, showing an incredibly fast speed up to 107 FPS (for the entire system) and superior quality of the reconstructed map.
March 2024. https://arxiv.org/abs/2403.12550
92 EndoGSLAM: Real-Time Dense Reconstruction and Tracking in Endoscopic Surgeries using Gaussian Splatting Kailing Wang,Chen Yang,Yuehao Wang,Sikuang Li,Yan Wang,Qi Dou,Xiaokang Yang,Wei Shen
AbstractPrecise camera tracking, high-fidelity 3D tissue reconstruction, and real-time online visualization are critical for intrabody medical imaging devices such as endoscopes and capsule robots. However, existing SLAM (Simultaneous Localization and Mapping) methods often struggle to achieve both complete high-quality surgical field reconstruction and efficient computation, restricting their intraoperative applications among endoscopic surgeries. In this paper, we introduce EndoGSLAM, an efficient SLAM approach for endoscopic surgeries, which integrates streamlined Gaussian representation and differentiable rasterization to facilitate over 100 fps rendering speed during online camera tracking and tissue reconstructing. Extensive experiments show that EndoGSLAM achieves a better trade-off between intraoperative availability and reconstruction quality than traditional or neural SLAM approaches, showing tremendous potential for endoscopic surgeries. The project page is at https://EndoGSLAM.loping151.com
March 2024. https://arxiv.org/abs/2403.15124
91 SyncTweedies: A General Generative Framework Based on Synchronized Diffusions Jaihoon Kim,Juil Koo,Kyeongmin Yeo,Minhyuk Sung
AbstractWe introduce a general framework for generating diverse visual content, including ambiguous images, panorama images, mesh textures, and Gaussian splat textures, by synchronizing multiple diffusion processes. We present exhaustive investigation into all possible scenarios for synchronizing multiple diffusion processes through a canonical space and analyze their characteristics across applications. In doing so, we reveal a previously unexplored case: averaging the outputs of Tweedie's formula while conducting denoising in multiple instance spaces. This case also provides the best quality with the widest applicability to downstream tasks. We name this case SyncTweedies. In our experiments generating visual content aforementioned, we demonstrate the superior quality of generation by SyncTweedies compared to other synchronization methods, optimization-based and iterative-update-based methods.
March 2024. https://arxiv.org/abs/2403.14370
90 STAG4D: Spatial-Temporal Anchored Generative 4D Gaussians Yifei Zeng,Yanqin Jiang,Siyu Zhu,Yuanxun Lu,Youtian Lin,Hao Zhu,Weiming Hu,Xun Cao,Yao Yao
AbstractRecent progress in pre-trained diffusion models and 3D generation have spurred interest in 4D content creation. However, achieving high-fidelity 4D generation with spatial-temporal consistency remains a challenge. In this work, we propose STAG4D, a novel framework that combines pre-trained diffusion models with dynamic 3D Gaussian splatting for high-fidelity 4D generation. Drawing inspiration from 3D generation techniques, we utilize a multi-view diffusion model to initialize multi-view images anchoring on the input video frames, where the video can be either real-world captured or generated by a video diffusion model. To ensure the temporal consistency of the multi-view sequence initialization, we introduce a simple yet effective fusion strategy to leverage the first frame as a temporal anchor in the self-attention computation. With the almost consistent multi-view sequences, we then apply the score distillation sampling to optimize the 4D Gaussian point cloud. The 4D Gaussian spatting is specially crafted for the generation task, where an adaptive densification strategy is proposed to mitigate the unstable Gaussian gradient for robust optimization. Notably, the proposed pipeline does not require any pre-training or fine-tuning of diffusion networks, offering a more accessible and practical solution for the 4D generation task. Extensive experiments demonstrate that our method outperforms prior 4D generation works in rendering quality, spatial-temporal consistency, and generation robustness, setting a new state-of-the-art for 4D generation from diverse inputs, including text, image, and video.
March 2024. https://arxiv.org/abs/2403.14939
89 MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images Yuedong Chen,Haofei Xu,Chuanxia Zheng,Bohan Zhuang,Marc Pollefeys,Andreas Geiger,Tat-Jen Cham,Jianfei Cai
AbstractWe propose MVSplat, an efficient feed-forward 3D Gaussian Splatting model learned from sparse multi-view images. To accurately localize the Gaussian centers, we propose to build a cost volume representation via plane sweeping in the 3D space, where the cross-view feature similarities stored in the cost volume can provide valuable geometry cues to the estimation of depth. We learn the Gaussian primitives' opacities, covariances, and spherical harmonics coefficients jointly with the Gaussian centers while only relying on photometric supervision. We demonstrate the importance of the cost volume representation in learning feed-forward Gaussian Splatting models via extensive experimental evaluations. On the large-scale RealEstate10K and ACID benchmarks, our model achieves state-of-the-art performance with the fastest feed-forward inference speed (22 fps). Compared to the latest state-of-the-art method pixelSplat, our model uses $10\times $ fewer parameters and infers more than $2\times$ faster while providing higher appearance and geometry quality as well as better cross-dataset generalization.
March 2024. https://arxiv.org/abs/2403.14627
88 Gaussian Frosting: Editable Complex Radiance Fields with Real-Time Rendering Antoine Gu\xc3\xa9don,Vincent Lepetit
AbstractWe propose Gaussian Frosting, a novel mesh-based representation for high-quality rendering and editing of complex 3D effects in real-time. Our approach builds on the recent 3D Gaussian Splatting framework, which optimizes a set of 3D Gaussians to approximate a radiance field from images. We propose first extracting a base mesh from Gaussians during optimization, then building and refining an adaptive layer of Gaussians with a variable thickness around the mesh to better capture the fine details and volumetric effects near the surface, such as hair or grass. We call this layer Gaussian Frosting, as it resembles a coating of frosting on a cake. The fuzzier the material, the thicker the frosting. We also introduce a parameterization of the Gaussians to enforce them to stay inside the frosting layer and automatically adjust their parameters when deforming, rescaling, editing or animating the mesh. Our representation allows for efficient rendering using Gaussian splatting, as well as editing and animation by modifying the base mesh. We demonstrate the effectiveness of our method on various synthetic and real scenes, and show that it outperforms existing surface-based approaches. We will release our code and a web-based viewer as additional contributions. Our project page is the following: https://anttwo.github.io/frosting/
March 2024. https://arxiv.org/abs/2403.14554
87 Isotropic Gaussian Splatting for Real-Time Radiance Field Rendering Yuanhao Gong,Lantao Yu,Guanghui Yue
AbstractThe 3D Gaussian splatting method has drawn a lot of attention, thanks to its high performance in training and high quality of the rendered image. However, it uses anisotropic Gaussian kernels to represent the scene. Although such anisotropic kernels have advantages in representing the geometry, they lead to difficulties in terms of computation, such as splitting or merging two kernels. In this paper, we propose to use isotropic Gaussian kernels to avoid such difficulties in the computation, leading to a higher performance method. The experiments confirm that the proposed method is about {\bf 100X} faster without losing the geometry representation accuracy. The proposed method can be applied in a large range applications where the radiance field is needed, such as 3D reconstruction, view synthesis, and dynamic object modeling.
March 2024. https://arxiv.org/abs/2403.14244
86 Mini-Splatting: Representing Scenes with a Constrained Number of Gaussians Guangchi Fang,Bing Wang
AbstractIn this study, we explore the challenge of efficiently representing scenes with a constrained number of Gaussians. Our analysis shifts from traditional graphics and 2D computer vision to the perspective of point clouds, highlighting the inefficient spatial distribution of Gaussian representation as a key limitation in model performance. To address this, we introduce strategies for densification including blur split and depth reinitialization, and simplification through Gaussian binarization and sampling. These techniques reorganize the spatial positions of the Gaussians, resulting in significant improvements across various datasets and benchmarks in terms of rendering quality, resource consumption, and storage compression. Our proposed Mini-Splatting method integrates seamlessly with the original rasterization pipeline, providing a strong baseline for future research in Gaussian-Splatting-based works.
March 2024. https://arxiv.org/abs/2403.14166
85 RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS Michael Niemeyer,Fabian Manhardt,Marie-Julie Rakotosaona,Michael Oechsle,Daniel Duckworth,Rama Gosula,Keisuke Tateno,John Bates,Dominik Kaeser,Federico Tombari
AbstractRecent advances in view synthesis and real-time rendering have achieved photorealistic quality at impressive rendering speeds. While Radiance Field-based methods achieve state-of-the-art quality in challenging scenarios such as in-the-wild captures and large-scale scenes, they often suffer from excessively high compute requirements linked to volumetric rendering. Gaussian Splatting-based methods, on the other hand, rely on rasterization and naturally achieve real-time rendering but suffer from brittle optimization heuristics that underperform on more challenging scenes. In this work, we present RadSplat, a lightweight method for robust real-time rendering of complex scenes. Our main contributions are threefold. First, we use radiance fields as a prior and supervision signal for optimizing point-based scene representations, leading to improved quality and more robust optimization. Next, we develop a novel pruning technique reducing the overall point count while maintaining high quality, leading to smaller and more compact scene representations with faster inference speeds. Finally, we propose a novel test-time filtering approach that further accelerates rendering and allows to scale to larger, house-sized scenes. We find that our method enables state-of-the-art synthesis of complex captures at 900+ FPS.
March 2024. https://arxiv.org/abs/2403.13806
84 Periodic Vibration Gaussian: Dynamic Urban Scene Reconstruction and Real-time Rendering Yurui Chen,Chun Gu,Junzhe Jiang,Xiatian Zhu,Li Zhang
AbstractModeling dynamic, large-scale urban scenes is challenging due to their highly intricate geometric structures and unconstrained dynamics in both space and time. Prior methods often employ high-level architectural priors, separating static and dynamic elements, resulting in suboptimal capture of their synergistic interactions. To address this challenge, we present a unified representation model, called Periodic Vibration Gaussian (PVG). PVG builds upon the efficient 3D Gaussian splatting technique, originally designed for static scene representation, by introducing periodic vibration-based temporal dynamics. This innovation enables PVG to elegantly and uniformly represent the characteristics of various objects and elements in dynamic urban scenes. To enhance temporally coherent and large scene representation learning with sparse training data, we introduce a novel temporal smoothing mechanism and a position-aware adaptive control strategy respectively. Extensive experiments on Waymo Open Dataset and KITTI benchmarks demonstrate that PVG surpasses state-of-the-art alternatives in both reconstruction and novel view synthesis for both dynamic and static scenes. Notably, PVG achieves this without relying on manually labeled object bounding boxes or expensive optical flow estimation. Moreover, PVG exhibits 900-fold acceleration in rendering over the best alternative.
November 2023. https://arxiv.org/abs/2311.18561
83 iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching Yuan Sun,Xuan Wang,Yunfan Zhang,Jie Zhang,Caigui Jiang,Yu Guo,Fei Wang
AbstractWe present a method named iComMa to address the 6D camera pose estimation problem in computer vision. Conventional pose estimation methods typically rely on the target's CAD model or necessitate specific network training tailored to particular object classes. Some existing methods have achieved promising results in mesh-free object and scene pose estimation by inverting the Neural Radiance Fields (NeRF). However, they still struggle with adverse initializations such as large rotations and translations. To address this issue, we propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS). Specifically, a gradient-based differentiable framework optimizes camera pose by minimizing the residual between the query image and the rendered image, requiring no training. An end-to-end matching module is designed to enhance the model's robustness against adverse initializations, while minimizing pixel-level comparing loss aids in precise pose estimation. Experimental results on synthetic and complex real-world data demonstrate the effectiveness of the proposed approach in challenging conditions and the accuracy of camera pose estimation.
December 2023. https://arxiv.org/abs/2312.09031
82 DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes Xiaoyu Zhou,Zhiwei Lin,Xiaojun Shan,Yongtao Wang,Deqing Sun,Ming-Hsuan Yang
AbstractWe present DrivingGaussian, an efficient and effective framework for surrounding dynamic autonomous driving scenes. For complex scenes with moving objects, we first sequentially and progressively model the static background of the entire scene with incremental static 3D Gaussians. We then leverage a composite dynamic Gaussian graph to handle multiple moving objects, individually reconstructing each object and restoring their accurate positions and occlusion relationships within the scene. We further use a LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and maintain panoramic consistency. DrivingGaussian outperforms existing methods in dynamic driving scene reconstruction and enables photorealistic surround-view synthesis with high-fidelity and multi-camera consistency. Our project page is at: https://github.com/VDIGPKU/DrivingGaussian.
December 2023. https://arxiv.org/abs/2312.07920
81 Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion Otto Seiskari,Jerry Ylilammi,Valtteri Kaatrasalo,Pekka Rantalankila,Matias Turkulainen,Juho Kannala,Esa Rahtu,Arno Solin
AbstractHigh-quality scene reconstruction and novel view synthesis based on Gaussian Splatting (3DGS) typically require steady, high-quality photographs, often impractical to capture with handheld cameras. We present a method that adapts to camera motion and allows high-quality scene reconstruction with handheld video data suffering from motion blur and rolling shutter distortion. Our approach is based on detailed modelling of the physical image formation process and utilizes velocities estimated using visual-inertial odometry (VIO). Camera poses are considered non-static during the exposure time of a single image frame and camera poses are further optimized in the reconstruction process. We formulate a differentiable rendering pipeline that leverages screen space approximation to efficiently incorporate rolling-shutter and motion blur effects into the 3DGS framework. Our results with both synthetic and real data demonstrate superior performance in mitigating camera motion over existing methods, thereby advancing 3DGS in naturalistic settings.
March 2024. https://arxiv.org/abs/2403.13327
80 GaussNav: Gaussian Splatting for Visual Navigation Xiaohan Lei,Min Wang,Wengang Zhou,Houqiang Li
AbstractIn embodied vision, Instance ImageGoal Navigation (IIN) requires an agent to locate a specific object depicted in a goal image within an unexplored environment. The primary difficulty of IIN stems from the necessity of recognizing the target object across varying viewpoints and rejecting potential distractors. Existing map-based navigation methods largely adopt the representation form of Bird's Eye View (BEV) maps, which, however, lack the representation of detailed textures in a scene. To address the above issues, we propose a new Gaussian Splatting Navigation (abbreviated as GaussNav) framework for IIN task, which constructs a novel map representation based on 3D Gaussian Splatting (3DGS). The proposed framework enables the agent to not only memorize the geometry and semantic information of the scene, but also retain the textural features of objects. Our GaussNav framework demonstrates a significant leap in performance, evidenced by an increase in Success weighted by Path Length (SPL) from 0.252 to 0.578 on the challenging Habitat-Matterport 3D (HM3D) dataset. Our code will be made publicly available.
March 2024. https://arxiv.org/abs/2403.11625
79 GVGEN: Text-to-3D Generation with Volumetric Representation Xianglong He,Junyi Chen,Sida Peng,Di Huang,Yangguang Li,Xiaoshui Huang,Chun Yuan,Wanli Ouyang,Tong He
AbstractIn recent years, 3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities. To address these shortcomings, this paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input. We propose two innovative techniques:(1) Structured Volumetric Representation. We first arrange disorganized 3D Gaussian points as a structured form GaussianVolume. This transformation allows the capture of intricate texture details within a volume composed of a fixed number of Gaussians. To better optimize the representation of these details, we propose a unique pruning and densifying method named the Candidate Pool Strategy, enhancing detail fidelity through selective optimization. (2) Coarse-to-fine Generation Pipeline. To simplify the generation of GaussianVolume and empower the model to generate instances with detailed 3D geometry, we propose a coarse-to-fine pipeline. It initially constructs a basic geometric structure, followed by the prediction of complete Gaussian attributes. Our framework, GVGEN, demonstrates superior performance in qualitative and quantitative assessments compared to existing 3D generation methods. Simultaneously, it maintains a fast generation speed ($\sim$7 seconds), effectively striking a balance between quality and efficiency.
March 2024. https://arxiv.org/abs/2403.12957
78 HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting Hongyu Zhou,Jiahao Shao,Lu Xu,Dongfeng Bai,Weichao Qiu,Bingbing Liu,Yue Wang,Andreas Geiger,Yiyi Liao
AbstractHolistic understanding of urban scenes based on RGB images is a challenging yet important problem. It encompasses understanding both the geometry and appearance to enable novel view synthesis, parsing semantic labels, and tracking moving objects. Despite considerable progress, existing approaches often focus on specific aspects of this task and require additional inputs such as LiDAR scans or manually annotated 3D bounding boxes. In this paper, we introduce a novel pipeline that utilizes 3D Gaussian Splatting for holistic urban scene understanding. Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians, where moving object poses are regularized via physical constraints. Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy, and reconstruct dynamic scenes, even in scenarios where 3D bounding box detection are highly noisy. Experimental results on KITTI, KITTI-360, and Virtual KITTI 2 demonstrate the effectiveness of our approach.
March 2024. https://arxiv.org/abs/2403.12722
77 BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting Lingzhe Zhao,Peng Wang,Peidong Liu
AbstractWhile neural rendering has demonstrated impressive capabilities in 3D scene reconstruction and novel view synthesis, it heavily relies on high-quality sharp images and accurate camera poses. Numerous approaches have been proposed to train Neural Radiance Fields (NeRF) with motion-blurred images, commonly encountered in real-world scenarios such as low-light or long-exposure conditions. However, the implicit representation of NeRF struggles to accurately recover intricate details from severely motion-blurred images and cannot achieve real-time rendering. In contrast, recent advancements in 3D Gaussian Splatting achieve high-quality 3D scene reconstruction and real-time rendering by explicitly optimizing point clouds as Gaussian spheres. In this paper, we introduce a novel approach, named BAD-Gaussians (Bundle Adjusted Deblur Gaussian Splatting), which leverages explicit Gaussian representation and handles severe motion-blurred images with inaccurate camera poses to achieve high-quality scene reconstruction. Our method models the physical image formation process of motion-blurred images and jointly learns the parameters of Gaussians while recovering camera motion trajectories during exposure time. In our experiments, we demonstrate that BAD-Gaussians not only achieves superior rendering quality compared to previous state-of-the-art deblur neural rendering methods on both synthetic and real datasets but also enables real-time rendering capabilities. Our project page and source code is available at https://lingzhezhao.github.io/BAD-Gaussians/
March 2024. https://arxiv.org/abs/2403.11831
76 High-Fidelity SLAM Using Gaussian Splatting with Rendering-Guided Densification and Regularized Optimization Shuo Sun,Malcolm Mielle,Achim J. Lilienthal,Martin Magnusson
AbstractWe propose a dense RGBD SLAM system based on 3D Gaussian Splatting that provides metrically accurate pose tracking and visually realistic reconstruction. To this end, we first propose a Gaussian densification strategy based on the rendering loss to map unobserved areas and refine reobserved areas. Second, we introduce extra regularization parameters to alleviate the forgetting problem in the continuous mapping problem, where parameters tend to overfit the latest frame and result in decreasing rendering quality for previous frames. Both mapping and tracking are performed with Gaussian parameters by minimizing re-rendering loss in a differentiable way. Compared to recent neural and concurrently developed gaussian splatting RGBD SLAM baselines, our method achieves state-of-the-art results on the synthetic dataset Replica and competitive results on the real-world dataset TUM.
March 2024. https://arxiv.org/abs/2403.12535
75 Controllable Text-to-3D Generation via Surface-Aligned Gaussian Splatting Zhiqi Li,Yiming Chen,Lingzhe Zhao,Peidong Liu
AbstractWhile text-to-3D and image-to-3D generation tasks have received considerable attention, one important but under-explored field between them is controllable text-to-3D generation, which we mainly focus on in this work. To address this task, 1) we introduce Multi-view ControlNet (MVControl), a novel neural network architecture designed to enhance existing pre-trained multi-view diffusion models by integrating additional input conditions, such as edge, depth, normal, and scribble maps. Our innovation lies in the introduction of a conditioning module that controls the base diffusion model using both local and global embeddings, which are computed from the input condition images and camera poses. Once trained, MVControl is able to offer 3D diffusion guidance for optimization-based 3D generation. And, 2) we propose an efficient multi-stage 3D generation pipeline that leverages the benefits of recent large reconstruction models and score distillation algorithm. Building upon our MVControl architecture, we employ a unique hybrid diffusion guidance method to direct the optimization process. In pursuit of efficiency, we adopt 3D Gaussians as our representation instead of the commonly used implicit representations. We also pioneer the use of SuGaR, a hybrid representation that binds Gaussians to mesh triangle faces. This approach alleviates the issue of poor geometry in 3D Gaussians and enables the direct sculpting of fine-grained geometry on the mesh. Extensive experiments demonstrate that our method achieves robust generalization and enables the controllable generation of high-quality 3D content.
March 2024. https://arxiv.org/abs/2403.09981
74 GGRt: Towards Pose-free Generalizable 3D Gaussian Splatting in Real-time Hao Li,Yuanyuan Gao,Chenming Wu,Dingwen Zhang,Yalun Dai,Chen Zhao,Haocheng Feng,Errui Ding,Jingdong Wang,Junwei Han
AbstractThis paper presents GGRt, a novel approach to generalizable novel view synthesis that alleviates the need for real camera poses, complexity in processing high-resolution images, and lengthy optimization processes, thus facilitating stronger applicability of 3D Gaussian Splatting (3D-GS) in real-world scenarios. Specifically, we design a novel joint learning framework that consists of an Iterative Pose Optimization Network (IPO-Net) and a Generalizable 3D-Gaussians (G-3DG) model. With the joint learning mechanism, the proposed framework can inherently estimate robust relative pose information from the image observations and thus primarily alleviate the requirement of real camera poses. Moreover, we implement a deferred back-propagation mechanism that enables high-resolution training and inference, overcoming the resolution constraints of previous methods. To enhance the speed and efficiency, we further introduce a progressive Gaussian cache module that dynamically adjusts during training and inference. As the first pose-free generalizable 3D-GS framework, GGRt achieves inference at $\ge$ 5 FPS and real-time rendering at $\ge$ 100 FPS. Through extensive experimentation, we demonstrate that our method outperforms existing NeRF-based pose-free techniques in terms of inference speed and effectiveness. It can also approach the real pose-based 3D-GS methods. Our contributions provide a significant leap forward for the integration of computer vision and computer graphics into practical applications, offering state-of-the-art results on LLFF, KITTI, and Waymo Open datasets and enabling real-time rendering for immersive experiences.
March 2024. https://arxiv.org/abs/2403.10147
73 Touch-GS: Visual-Tactile Supervised 3D Gaussian Splatting Aiden Swann,Matthew Strong,Won Kyung Do,Gadiel Sznaier Camps,Mac Schwager,Monroe Kennedy III
AbstractIn this work, we propose a novel method to supervise 3D Gaussian Splatting (3DGS) scenes using optical tactile sensors. Optical tactile sensors have become widespread in their use in robotics for manipulation and object representation; however, raw optical tactile sensor data is unsuitable to directly supervise a 3DGS scene. Our representation leverages a Gaussian Process Implicit Surface to implicitly represent the object, combining many touches into a unified representation with uncertainty. We merge this model with a monocular depth estimation network, which is aligned in a two stage process, coarsely aligning with a depth camera and then finely adjusting to match our touch data. For every training image, our method produces a corresponding fused depth and uncertainty map. Utilizing this additional information, we propose a new loss function, variance weighted depth supervised loss, for training the 3DGS scene model. We leverage the DenseTact optical tactile sensor and RealSense RGB-D camera to show that combining touch and vision in this manner leads to quantitatively and qualitatively better results than vision or touch alone in a few-view scene syntheses on opaque as well as on reflective and transparent objects. Please see our project page at http://armlabstanford.github.io/touch-gs
March 2024. https://arxiv.org/abs/2403.09875
72 Reinforcement Learning with Generalizable Gaussian Splatting Jiaxu Wang,Qiang Zhang,Jingkai Sun,Jiahang Cao,Yecheng Shao,Renjing Xu
AbstractAn excellent representation is crucial for reinforcement learning (RL) performance, especially in vision-based reinforcement learning tasks. The quality of the environment representation directly influences the achievement of the learning task. Previous vision-based RL typically uses explicit or implicit ways to represent environments, such as images, points, voxels, and neural radiance fields. However, these representations contain several drawbacks. They cannot either describe complex local geometries or generalize well to unseen scenes, or require precise foreground masks. Moreover, these implicit neural representations are akin to a ``black box", significantly hindering interpretability. 3D Gaussian Splatting (3DGS), with its explicit scene representation and differentiable rendering nature, is considered a revolutionary change for reconstruction and representation methods. In this paper, we propose a novel Generalizable Gaussian Splatting framework to be the representation of RL tasks, called GSRL. Through validation in the RoboMimic environment, our method achieves better results than other baselines in multiple tasks, improving the performance by 10%, 44%, and 15% compared with baselines on the hardest task. This work is the first attempt to leverage generalizable 3DGS as a representation for RL.
April 2024. https://arxiv.org/abs/2404.07950
71 3DGS-Calib: 3D Gaussian Splatting for Multimodal SpatioTemporal Calibration Quentin Herau,Moussab Bennehar,Arthur Moreau,Nathan Piasco,Luis Roldao,Dzmitry Tsishkou,Cyrille Migniot,Pascal Vasseur,C\xc3\xa9dric Demonceaux
AbstractReliable multimodal sensor fusion algorithms require accurate spatiotemporal calibration. Recently, targetless calibration techniques based on implicit neural representations have proven to provide precise and robust results. Nevertheless, such methods are inherently slow to train given the high computational overhead caused by the large number of sampled points required for volume rendering. With the recent introduction of 3D Gaussian Splatting as a faster alternative to implicit representation methods, we propose to leverage this new rendering approach to achieve faster multi-sensor calibration. We introduce 3DGS-Calib, a new calibration method that relies on the speed and rendering accuracy of 3D Gaussian Splatting to achieve multimodal spatiotemporal calibration that is accurate, robust, and with a substantial speed-up compared to methods relying on implicit neural representations. We demonstrate the superiority of our proposal with experimental results on sequences from KITTI-360, a widely used driving dataset.
March 2024. https://arxiv.org/abs/2403.11577
70 Fed3DGS: Scalable 3D Gaussian Splatting with Federated Learning Teppei Suzuki
AbstractIn this work, we present Fed3DGS, a scalable 3D reconstruction framework based on 3D Gaussian splatting (3DGS) with federated learning. Existing city-scale reconstruction methods typically adopt a centralized approach, which gathers all data in a central server and reconstructs scenes. The approach hampers scalability because it places a heavy load on the server and demands extensive data storage when reconstructing scenes on a scale beyond city-scale. In pursuit of a more scalable 3D reconstruction, we propose a federated learning framework with 3DGS, which is a decentralized framework and can potentially use distributed computational resources across millions of clients. We tailor a distillation-based model update scheme for 3DGS and introduce appearance modeling for handling non-IID data in the scenario of 3D reconstruction with federated learning. We simulate our method on several large-scale benchmarks, and our method demonstrates rendered image quality comparable to centralized approaches. In addition, we also simulate our method with data collected in different seasons, demonstrating that our framework can reflect changes in the scenes and our appearance modeling captures changes due to seasonal variations.
March 2024. https://arxiv.org/abs/2403.11460
69 Bridging 3D Gaussian and Mesh for Freeview Video Rendering Yuting Xiao,Xuan Wang,Jiafei Li,Hongrui Cai,Yanbo Fan,Nan Xue,Minghui Yang,Yujun Shen,Shenghua Gao
AbstractThis is only a preview version of GauMesh. Recently, primitive-based rendering has been proven to achieve convincing results in solving the problem of modeling and rendering the 3D dynamic scene from 2D images. Despite this, in the context of novel view synthesis, each type of primitive has its inherent defects in terms of representation ability. It is difficult to exploit the mesh to depict the fuzzy geometry. Meanwhile, the point-based splatting (e.g. the 3D Gaussian Splatting) method usually produces artifacts or blurry pixels in the area with smooth geometry and sharp textures. As a result, it is difficult, even not impossible, to represent the complex and dynamic scene with a single type of primitive. To this end, we propose a novel approach, GauMesh, to bridge the 3D Gaussian and Mesh for modeling and rendering the dynamic scenes. Given a sequence of tracked mesh as initialization, our goal is to simultaneously optimize the mesh geometry, color texture, opacity maps, a set of 3D Gaussians, and the deformation field. At a specific time, we perform $\xce\xb1$-blending on the RGB and opacity values based on the merged and re-ordered z-buffers from mesh and 3D Gaussian rasterizations. This produces the final rendering, which is supervised by the ground-truth image. Experiments demonstrate that our approach adapts the appropriate type of primitives to represent the different parts of the dynamic scene and outperforms all the baseline methods in both quantitative and qualitative comparisons without losing render speed.
March 2024. https://arxiv.org/abs/2403.11453
68 Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction Zhiyang Guo,Wengang Zhou,Li Li,Min Wang,Houqiang Li
Abstract3D Gaussian Splatting (3DGS) has become an emerging tool for dynamic scene reconstruction. However, existing methods focus mainly on extending static 3DGS into a time-variant representation, while overlooking the rich motion information carried by 2D observations, thus suffering from performance degradation and model redundancy. To address the above problem, we propose a novel motion-aware enhancement framework for dynamic scene reconstruction, which mines useful motion cues from optical flow to improve different paradigms of dynamic 3DGS. Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow. Then a novel flow augmentation method is introduced with additional insights into uncertainty and loss collaboration. Moreover, for the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed. We conduct extensive experiments on both multi-view and monocular scenes to verify the merits of our work. Compared with the baselines, our method shows significant superiority in both rendering quality and efficiency.
March 2024. https://arxiv.org/abs/2403.11447
67 BAGS: Building Animatable Gaussian Splatting from a Monocular Video with Diffusion Priors Tingyang Zhang,Qingzhe Gao,Weiyu Li,Libin Liu,Baoquan Chen
AbstractAnimatable 3D reconstruction has significant applications across various fields, primarily relying on artists' handcraft creation. Recently, some studies have successfully constructed animatable 3D models from monocular videos. However, these approaches require sufficient view coverage of the object within the input video and typically necessitate significant time and computational costs for training and rendering. This limitation restricts the practical applications. In this work, we propose a method to build animatable 3D Gaussian Splatting from monocular video with diffusion priors. The 3D Gaussian representations significantly accelerate the training and rendering process, and the diffusion priors allow the method to learn 3D models with limited viewpoints. We also present the rigid regularization to enhance the utilization of the priors. We perform an extensive evaluation across various real-world videos, demonstrating its superior performance compared to the current state-of-the-art methods.
March 2024. https://arxiv.org/abs/2403.11427
66 Beyond Uncertainty: Risk-Aware Active View Acquisition for Safe Robot Navigation and 3D Scene Understanding with FisherRF Guangyi Liu,Wen Jiang,Boshu Lei,Vivek Pandey,Kostas Daniilidis,Nader Motee
AbstractThis work proposes a novel approach to bolster both the robot's risk assessment and safety measures while deepening its understanding of 3D scenes, which is achieved by leveraging Radiance Field (RF) models and 3D Gaussian Splatting. To further enhance these capabilities, we incorporate additional sampled views from the environment with the RF model. One of our key contributions is the introduction of Risk-aware Environment Masking (RaEM), which prioritizes crucial information by selecting the next-best-view that maximizes the expected information gain. This targeted approach aims to minimize uncertainties surrounding the robot's path and enhance the safety of its navigation. Our method offers a dual benefit: improved robot safety and increased efficiency in risk-aware 3D scene reconstruction and understanding. Extensive experiments in real-world scenarios demonstrate the effectiveness of our proposed approach, highlighting its potential to establish a robust and safety-focused framework for active robot exploration and 3D scene understanding.
March 2024. https://arxiv.org/abs/2403.11396
65 3DGS-ReLoc: 3D Gaussian Splatting for Map Representation and Visual ReLocalization Peng Jiang,Gaurav Pandey,Srikanth Saripalli
AbstractThis paper presents a novel system designed for 3D mapping and visual relocalization using 3D Gaussian Splatting. Our proposed method uses LiDAR and camera data to create accurate and visually plausible representations of the environment. By leveraging LiDAR data to initiate the training of the 3D Gaussian Splatting map, our system constructs maps that are both detailed and geometrically accurate. To mitigate excessive GPU memory usage and facilitate rapid spatial queries, we employ a combination of a 2D voxel map and a KD-tree. This preparation makes our method well-suited for visual localization tasks, enabling efficient identification of correspondences between the query image and the rendered image from the Gaussian Splatting map via normalized cross-correlation (NCC). Additionally, we refine the camera pose of the query image using feature-based matching and the Perspective-n-Point (PnP) technique. The effectiveness, adaptability, and precision of our system are demonstrated through extensive evaluation on the KITTI360 dataset.
March 2024. https://arxiv.org/abs/2403.11367
64 Creating Seamless 3D Maps Using Radiance Fields Sai Tarun Sathyan,Thomas B. Kinsman
AbstractIt is desirable to create 3D object models and 3D maps from 2D input images for applications such as navigation, virtual tourism, and urban planning. The traditional methods of creating 3D maps, (such as photogrammetry), require a large number of images and odometry. Additionally, traditional methods have difficulty with reflective surfaces and specular reflections; windows and chrome in the scene can be problematic. Google Road View is a familiar application, which uses traditional methods to fuse a collection of 2D input images into the illusion of a 3D map. However, Google Road View does not create an actual 3D object model, only a collection of views. The objective of this work is to create an actual 3D object model using updated techniques. Neural Radiance Fields (NeRF[1]) has emerged as a potential solution, offering the capability to produce more precise and intricate 3D maps. Gaussian Splatting[4] is another contemporary technique. This investigation compares Neural Radiance Fields to Gaussian Splatting, and describes some of their inner workings. Our primary contribution is a method for improving the results of the 3D reconstructed models. Our results indicate that Gaussian Splatting was superior to the NeRF technique.
March 2024. https://arxiv.org/abs/2403.11364
63 GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering Yanyan Li,Chenyu Lyu,Yan Di,Guangyao Zhai,Gim Hee Lee,Federico Tombari
AbstractDuring the Gaussian Splatting optimization process, the scene's geometry can gradually deteriorate if its structure is not deliberately preserved, especially in non-textured regions such as walls, ceilings, and furniture surfaces. This degradation significantly affects the rendering quality of novel views that deviate significantly from the viewpoints in the training data. To mitigate this issue, we propose a novel approach called GeoGaussian. Based on the smoothly connected areas observed from point clouds, this method introduces a novel pipeline to initialize thin Gaussians aligned with the surfaces, where the characteristic can be transferred to new generations through a carefully designed densification strategy. Finally, the pipeline ensures that the scene's geometry and texture are maintained through constrained optimization processes with explicit geometry constraints. Benefiting from the proposed architecture, the generative ability of 3D Gaussians is enhanced, especially in structured regions. Our proposed pipeline achieves state-of-the-art performance in novel view synthesis and geometric reconstruction, as evaluated qualitatively and quantitatively on public datasets.
March 2024. https://arxiv.org/abs/2403.11324
62 BrightDreamer: Generic 3D Gaussian Generative Framework for Fast Text-to-3D Synthesis Lutao Jiang,Lin Wang
AbstractText-to-3D synthesis has recently seen intriguing advances by combining the text-to-image models with 3D representation methods, e.g., Gaussian Splatting (GS), via Score Distillation Sampling (SDS). However, a hurdle of existing methods is the low efficiency, per-prompt optimization for a single 3D object. Therefore, it is imperative for a paradigm shift from per-prompt optimization to one-stage generation for any unseen text prompts, which yet remains challenging. A hurdle is how to directly generate a set of millions of 3D Gaussians to represent a 3D object. This paper presents BrightDreamer, an end-to-end single-stage approach that can achieve generalizable and fast (77 ms) text-to-3D generation. Our key idea is to formulate the generation process as estimating the 3D deformation from an anchor shape with predefined positions. For this, we first propose a Text-guided Shape Deformation (TSD) network to predict the deformed shape and its new positions, used as the centers (one attribute) of 3D Gaussians. To estimate the other four attributes (i.e., scaling, rotation, opacity, and SH coefficient), we then design a novel Text-guided Triplane Generator (TTG) to generate a triplane representation for a 3D object. The center of each Gaussian enables us to transform the triplane feature into the four attributes. The generated 3D Gaussians can be finally rendered at 705 frames per second. Extensive experiments demonstrate the superiority of our method over existing methods. Also, BrightDreamer possesses a strong semantic understanding capability even for complex text prompts. The project code is available at https://vlislab22.github.io/BrightDreamer.
March 2024. https://arxiv.org/abs/2403.11273
61 Compact 3D Gaussian Splatting For Dense Visual SLAM Tianchen Deng,Yaohui Chen,Leyan Zhang,Jianfei Yang,Shenghai Yuan,Danwei Wang,Weidong Chen
AbstractRecent work has shown that 3D Gaussian-based SLAM enables high-quality reconstruction, accurate pose estimation, and real-time rendering of scenes. However, these approaches are built on a tremendous number of redundant 3D Gaussian ellipsoids, leading to high memory and storage costs, and slow training speed. To address the limitation, we propose a compact 3D Gaussian Splatting SLAM system that reduces the number and the parameter size of Gaussian ellipsoids. A sliding window-based masking strategy is first proposed to reduce the redundant ellipsoids. Then we observe that the covariance matrix (geometry) of most 3D Gaussian ellipsoids are extremely similar, which motivates a novel geometry codebook to compress 3D Gaussian geometric attributes, i.e., the parameters. Robust and accurate pose estimation is achieved by a global bundle adjustment method with reprojection loss. Extensive experiments demonstrate that our method achieves faster training and rendering speed while maintaining the state-of-the-art (SOTA) quality of the scene representation.
March 2024. https://arxiv.org/abs/2403.11247
60 GS-Pose: Cascaded Framework for Generalizable Segmentation-based 6D Object Pose Estimation Dingding Cai,Janne Heikkil\xc3\xa4,Esa Rahtu
AbstractThis paper introduces GS-Pose, an end-to-end framework for locating and estimating the 6D pose of objects. GS-Pose begins with a set of posed RGB images of a previously unseen object and builds three distinct representations stored in a database. At inference, GS-Pose operates sequentially by locating the object in the input image, estimating its initial 6D pose using a retrieval approach, and refining the pose with a render-and-compare method. The key insight is the application of the appropriate object representation at each stage of the process. In particular, for the refinement step, we utilize 3D Gaussian splatting, a novel differentiable rendering technique that offers high rendering speed and relatively low optimization time. Off-the-shelf toolchains and commodity hardware, such as mobile phones, can be used to capture new objects to be added to the database. Extensive evaluations on the LINEMOD and OnePose-LowTexture datasets demonstrate excellent performance, establishing the new state-of-the-art. Project page: https://dingdingcai.github.io/gs-pose.
March 2024. https://arxiv.org/abs/2403.10683
59 FDGaussian: Fast Gaussian Splatting from Single Image via Geometric-aware Diffusion Model Qijun Feng,Zhen Xing,Zuxuan Wu,Yu-Gang Jiang
AbstractReconstructing detailed 3D objects from single-view images remains a challenging task due to the limited information available. In this paper, we introduce FDGaussian, a novel two-stage framework for single-image 3D reconstruction. Recent methods typically utilize pre-trained 2D diffusion models to generate plausible novel views from the input image, yet they encounter issues with either multi-view inconsistency or lack of geometric fidelity. To overcome these challenges, we propose an orthogonal plane decomposition mechanism to extract 3D geometric features from the 2D input, enabling the generation of consistent multi-view images. Moreover, we further accelerate the state-of-the-art Gaussian Splatting incorporating epipolar attention to fuse images from different viewpoints. We demonstrate that FDGaussian generates images with high consistency across different views and reconstructs high-quality 3D objects, both qualitatively and quantitatively. More examples can be found at our website https://qjfeng.net/FDGaussian/.
March 2024. https://arxiv.org/abs/2403.10242
58 Texture-GS: Disentangling the Geometry and Texture for 3D Gaussian Splatting Editing Tian-Xing Xu,Wenbo Hu,Yu-Kun Lai,Ying Shan,Song-Hai Zhang
Abstract3D Gaussian splatting, emerging as a groundbreaking approach, has drawn increasing attention for its capabilities of high-fidelity reconstruction and real-time rendering. However, it couples the appearance and geometry of the scene within the Gaussian attributes, which hinders the flexibility of editing operations, such as texture swapping. To address this issue, we propose a novel approach, namely Texture-GS, to disentangle the appearance from the geometry by representing it as a 2D texture mapped onto the 3D surface, thereby facilitating appearance editing. Technically, the disentanglement is achieved by our proposed texture mapping module, which consists of a UV mapping MLP to learn the UV coordinates for the 3D Gaussian centers, a local Taylor expansion of the MLP to efficiently approximate the UV coordinates for the ray-Gaussian intersections, and a learnable texture to capture the fine-grained appearance. Extensive experiments on the DTU dataset demonstrate that our method not only facilitates high-fidelity appearance editing but also achieves real-time rendering on consumer-level devices, e.g. a single RTX 2080 Ti GPU.
March 2024. https://arxiv.org/abs/2403.10050
57 GaussianGrasper: 3D Language Gaussian Splatting for Open-vocabulary Robotic Grasping Yuhang Zheng,Xiangyu Chen,Yupeng Zheng,Songen Gu,Runyi Yang,Bu Jin,Pengfei Li,Chengliang Zhong,Zengmao Wang,Lina Liu,Chao Yang,Dawei Wang,Zhen Chen,Xiaoxiao Long,Meiqing Wang
AbstractConstructing a 3D scene capable of accommodating open-ended language queries, is a pivotal pursuit, particularly within the domain of robotics. Such technology facilitates robots in executing object manipulations based on human language directives. To tackle this challenge, some research efforts have been dedicated to the development of language-embedded implicit fields. However, implicit fields (e.g. NeRF) encounter limitations due to the necessity of processing a large number of input views for reconstruction, coupled with their inherent inefficiencies in inference. Thus, we present the GaussianGrasper, which utilizes 3D Gaussian Splatting to explicitly represent the scene as a collection of Gaussian primitives. Our approach takes a limited set of RGB-D views and employs a tile-based splatting technique to create a feature field. In particular, we propose an Efficient Feature Distillation (EFD) module that employs contrastive learning to efficiently and accurately distill language embeddings derived from foundational models. With the reconstructed geometry of the Gaussian field, our method enables the pre-trained grasping model to generate collision-free grasp pose candidates. Furthermore, we propose a normal-guided grasp module to select the best grasp pose. Through comprehensive real-world experiments, we demonstrate that GaussianGrasper enables robots to accurately query and grasp objects with language instructions, providing a new solution for language-guided manipulation tasks. Data and codes can be available at https://github.com/MrSecant/GaussianGrasper.
March 2024. https://arxiv.org/abs/2403.09637
56 HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting Xian Liu,Xiaohang Zhan,Jiaxiang Tang,Ying Shan,Gang Zeng,Dahua Lin,Xihui Liu,Ziwei Liu
AbstractRealistic 3D human generation from text prompts is a desirable yet challenging task. Existing methods optimize 3D representations like mesh or neural fields via score distillation sampling (SDS), which suffers from inadequate fine details or excessive training time. In this paper, we propose an efficient yet effective framework, HumanGaussian, that generates high-quality 3D humans with fine-grained geometry and realistic appearance. Our key insight is that 3D Gaussian Splatting is an efficient renderer with periodic Gaussian shrinkage or growing, where such adaptive density control can be naturally guided by intrinsic human structures. Specifically, 1) we first propose a Structure-Aware SDS that simultaneously optimizes human appearance and geometry. The multi-modal score function from both RGB and depth space is leveraged to distill the Gaussian densification and pruning process. 2) Moreover, we devise an Annealed Negative Prompt Guidance by decomposing SDS into a noisier generative score and a cleaner classifier score, which well addresses the over-saturation issue. The floating artifacts are further eliminated based on Gaussian size in a prune-only phase to enhance generation smoothness. Extensive experiments demonstrate the superior efficiency and competitive quality of our framework, rendering vivid 3D humans under diverse scenarios. Project Page: https://alvinliu0.github.io/projects/HumanGaussian
November 2023. https://arxiv.org/abs/2311.17061
55 Relaxing Accurate Initialization Constraint for 3D Gaussian Splatting Jaewoo Jung,Jisang Han,Honggyu An,Jiwon Kang,Seonghoon Park,Seungryong Kim
Abstract3D Gaussian splatting (3DGS) has recently demonstrated impressive capabilities in real-time novel view synthesis and 3D reconstruction. However, 3DGS heavily depends on the accurate initialization derived from Structure-from-Motion (SfM) methods. When trained with randomly initialized point clouds, 3DGS fails to maintain its ability to produce high-quality images, undergoing large performance drops of 4-5 dB in PSNR. Through extensive analysis of SfM initialization in the frequency domain and analysis of a 1D regression task with multiple 1D Gaussians, we propose a novel optimization strategy dubbed RAIN-GS (Relaxing Accurate Initialization Constraint for 3D Gaussian Splatting), that successfully trains 3D Gaussians from random point clouds. We show the effectiveness of our strategy through quantitative and qualitative comparisons on multiple datasets, largely improving the performance in all settings. Our project page and code can be found at https://ku-cvlab.github.io/RAIN-GS.
March 2024. https://arxiv.org/abs/2403.09413
54 A New Split Algorithm for 3D Gaussian Splatting Qiyuan Feng,Gengchen Cao,Haoxiang Chen,Tai-Jiang Mu,Ralph R. Martin,Shi-Min Hu
Abstract3D Gaussian splatting models, as a novel explicit 3D representation, have been applied in many domains recently, such as explicit geometric editing and geometry generation. Progress has been rapid. However, due to their mixed scales and cluttered shapes, 3D Gaussian splatting models can produce a blurred or needle-like effect near the surface. At the same time, 3D Gaussian splatting models tend to flatten large untextured regions, yielding a very sparse point cloud. These problems are caused by the non-uniform nature of 3D Gaussian splatting models, so in this paper, we propose a new 3D Gaussian splitting algorithm, which can produce a more uniform and surface-bounded 3D Gaussian splatting model. Our algorithm splits an $N$-dimensional Gaussian into two N-dimensional Gaussians. It ensures consistency of mathematical characteristics and similarity of appearance, allowing resulting 3D Gaussian splatting models to be more uniform and a better fit to the underlying surface, and thus more suitable for explicit editing, point cloud extraction and other tasks. Meanwhile, our 3D Gaussian splitting approach has a very simple closed-form solution, making it readily applicable to any 3D Gaussian model.
March 2024. https://arxiv.org/abs/2403.09143
53 Gaussian Splatting in Style Abhishek Saroha,Mariia Gladkova,Cecilia Curreli,Tarun Yenamandra,Daniel Cremers
AbstractScene stylization extends the work of neural style transfer to three spatial dimensions. A vital challenge in this problem is to maintain the uniformity of the stylized appearance across a multi-view setting. A vast majority of the previous works achieve this by optimizing the scene with a specific style image. In contrast, we propose a novel architecture trained on a collection of style images, that at test time produces high quality stylized novel views. Our work builds up on the framework of 3D Gaussian splatting. For a given scene, we take the pretrained Gaussians and process them using a multi resolution hash grid and a tiny MLP to obtain the conditional stylised views. The explicit nature of 3D Gaussians give us inherent advantages over NeRF-based methods including geometric consistency, along with having a fast training and rendering regime. This enables our method to be useful for vast practical use cases such as in augmented or virtual reality applications. Through our experiments, we show our methods achieve state-of-the-art performance with superior visual quality on various indoor and outdoor real-world data.
March 2024. https://arxiv.org/abs/2403.08498
52 ManiGaussian: Dynamic Gaussian Splatting for Multi-task Robotic Manipulation Guanxing Lu,Shiyi Zhang,Ziwei Wang,Changliu Liu,Jiwen Lu,Yansong Tang
AbstractPerforming language-conditioned robotic manipulation tasks in unstructured environments is highly demanded for general intelligent robots. Conventional robotic manipulation methods usually learn semantic representation of the observation for action prediction, which ignores the scene-level spatiotemporal dynamics for human goal completion. In this paper, we propose a dynamic Gaussian Splatting method named ManiGaussian for multi-task robotic manipulation, which mines scene dynamics via future scene reconstruction. Specifically, we first formulate the dynamic Gaussian Splatting framework that infers the semantics propagation in the Gaussian embedding space, where the semantic representation is leveraged to predict the optimal robot action. Then, we build a Gaussian world model to parameterize the distribution in our dynamic Gaussian Splatting framework, which provides informative supervision in the interactive environment via future scene reconstruction. We evaluate our ManiGaussian on 10 RLBench tasks with 166 variations, and the results demonstrate our framework can outperform the state-of-the-art methods by 13.1\% in average success rate.
March 2024. https://arxiv.org/abs/2403.08321
51 StyleGaussian: Instant 3D Style Transfer with Gaussian Splatting Kunhao Liu,Fangneng Zhan,Muyu Xu,Christian Theobalt,Ling Shao,Shijian Lu
AbstractWe introduce StyleGaussian, a novel 3D style transfer technique that allows instant transfer of any image's style to a 3D scene at 10 frames per second (fps). Leveraging 3D Gaussian Splatting (3DGS), StyleGaussian achieves style transfer without compromising its real-time rendering ability and multi-view consistency. It achieves instant style transfer with three steps: embedding, transfer, and decoding. Initially, 2D VGG scene features are embedded into reconstructed 3D Gaussians. Next, the embedded features are transformed according to a reference style image. Finally, the transformed features are decoded into the stylized RGB. StyleGaussian has two novel designs. The first is an efficient feature rendering strategy that first renders low-dimensional features and then maps them into high-dimensional features while embedding VGG features. It cuts the memory consumption significantly and enables 3DGS to render the high-dimensional memory-intensive features. The second is a K-nearest-neighbor-based 3D CNN. Working as the decoder for the stylized features, it eliminates the 2D CNN operations that compromise strict multi-view consistency. Extensive experiments show that StyleGaussian achieves instant 3D stylization with superior stylization quality while preserving real-time rendering and strict multi-view consistency. Project page: https://kunhao-liu.github.io/StyleGaussian/
March 2024. https://arxiv.org/abs/2403.07807
50 DualBEV: CNN is All You Need in View Transformation Peidong Li,Wancheng Shen,Qihao Huang,Dixiao Cui
AbstractCamera-based Bird's-Eye-View (BEV) perception often struggles between adopting 3D-to-2D or 2D-to-3D view transformation (VT). The 3D-to-2D VT typically employs resource intensive Transformer to establish robust correspondences between 3D and 2D feature, while the 2D-to-3D VT utilizes the Lift-Splat-Shoot (LSS) pipeline for real-time application, potentially missing distant information. To address these limitations, we propose DualBEV, a unified framework that utilizes a shared CNN-based feature transformation incorporating three probabilistic measurements for both strategies. By considering dual-view correspondences in one-stage, DualBEV effectively bridges the gap between these strategies, harnessing their individual strengths. Our method achieves state-of-the-art performance without Transformer, delivering comparable efficiency to the LSS approach, with 55.2% mAP and 63.4% NDS on the nuScenes test set. Code will be released at https://github.com/PeidongLi/DualBEV.
March 2024. https://arxiv.org/abs/2403.05402
49 GSEdit: Efficient Text-Guided Editing of 3D Objects via Gaussian Splatting Francesco Palandra,Andrea Sanchietti,Daniele Baieri,Emanuele Rodol\xc3\xa0
AbstractWe present GSEdit, a pipeline for text-guided 3D object editing based on Gaussian Splatting models. Our method enables the editing of the style and appearance of 3D objects without altering their main details, all in a matter of minutes on consumer hardware. We tackle the problem by leveraging Gaussian splatting to represent 3D scenes, and we optimize the model while progressively varying the image supervision by means of a pretrained image-based diffusion model. The input object may be given as a 3D triangular mesh, or directly provided as Gaussians from a generative model such as DreamGaussian. GSEdit ensures consistency across different viewpoints, maintaining the integrity of the original object's information. Compared to previously proposed methods relying on NeRF-like MLP models, GSEdit stands out for its efficiency, making 3D editing tasks much faster. Our editing process is refined via the application of the SDS loss, ensuring that our edits are both precise and accurate. Our comprehensive evaluation demonstrates that GSEdit effectively alters object shape and appearance following the given textual instructions while preserving their coherence and detail.
March 2024. https://arxiv.org/abs/2403.05154
48 SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting Zhijing Shao,Zhaolong Wang,Zhuang Li,Duotun Wang,Xiangru Lin,Yu Zhang,Mingming Fan,Zeyu Wang
AbstractWe present SplattingAvatar, a hybrid 3D representation of photorealistic human avatars with Gaussian Splatting embedded on a triangle mesh, which renders over 300 FPS on a modern GPU and 30 FPS on a mobile device. We disentangle the motion and appearance of a virtual human with explicit mesh geometry and implicit appearance modeling with Gaussian Splatting. The Gaussians are defined by barycentric coordinates and displacement on a triangle mesh as Phong surfaces. We extend lifted optimization to simultaneously optimize the parameters of the Gaussians while walking on the triangle mesh. SplattingAvatar is a hybrid representation of virtual humans where the mesh represents low-frequency motion and surface deformation, while the Gaussians take over the high-frequency geometry and detailed appearance. Unlike existing deformation methods that rely on an MLP-based linear blend skinning (LBS) field for motion, we control the rotation and translation of the Gaussians directly by mesh, which empowers its compatibility with various animation techniques, e.g., skeletal animation, blend shapes, and mesh editing. Trainable from monocular videos for both full-body and head avatars, SplattingAvatar shows state-of-the-art rendering quality across multiple datasets.
March 2024. https://arxiv.org/abs/2403.05087
47 Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis Yuanhao Cai,Yixun Liang,Jiahao Wang,Angtian Wang,Yulun Zhang,Xiaokang Yang,Zongwei Zhou,Alan Yuille
AbstractX-ray is widely applied for transmission imaging due to its stronger penetration than natural light. When rendering novel view X-ray projections, existing methods mainly based on NeRF suffer from long training time and slow inference speed. In this paper, we propose a 3D Gaussian splatting-based framework, namely X-Gaussian, for X-ray novel view synthesis. Firstly, we redesign a radiative Gaussian point cloud model inspired by the isotropic nature of X-ray imaging. Our model excludes the influence of view direction when learning to predict the radiation intensity of 3D points. Based on this model, we develop a Differentiable Radiative Rasterization (DRR) with CUDA implementation. Secondly, we customize an Angle-pose Cuboid Uniform Initialization (ACUI) strategy that directly uses the parameters of the X-ray scanner to compute the camera information and then uniformly samples point positions within a cuboid enclosing the scanned object. Experiments show that our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying less than 15% training time and over 73x inference speed. The application on sparse-view CT reconstruction also reveals the practical values of our method. Code and models will be publicly available at https://github.com/caiyuanhao1998/X-Gaussian . A video demo of the training process visualization is at https://www.youtube.com/watch?v=gDVf_Ngeghg .
March 2024. https://arxiv.org/abs/2403.04116
46 3D Gaussian Model for Animation and Texturing Xiangzhi Eric Wang,Zackary P. T. Sin
Abstract3D Gaussian Splatting has made a marked impact on neural rendering by achieving impressive fidelity and performance. Despite this achievement, however, it is not readily applicable to developing interactive applications. Real-time applications like XR apps and games require functions such as animation, UV-mapping, and model editing simultaneously manipulated through the usage of a 3D model. We propose a modeling that is analogous to typical 3D models, which we call 3D Gaussian Model (3DGM); it provides a manipulatable proxy for novel animation and texture transfer. By binding the 3D Gaussians in texture space and re-projecting them back to world space through implicit shell mapping, we show how our 3D modeling can serve as a valid rendering methodology for interactive applications. It is further noted that recently, 3D mesh reconstruction works have been able to produce high-quality mesh for rendering. Our work, on the other hand, only requires an approximated geometry for rendering an object in high fidelity. Applicationwise, we will show that our proxy-based 3DGM is capable of driving novel animation without animated training data and texture transferring via UV mapping of the 3D Gaussians. We believe the result indicates the potential of our work for enabling interactive applications for 3D Gaussian Splatting.
February 2024. https://arxiv.org/abs/2402.19441
45 On the Error Analysis of 3D Gaussian Splatting and an Optimal Projection Strategy Letian Huang,Jiayang Bai,Jie Guo,Yuanqi Li,Yanwen Guo
Abstract3D Gaussian Splatting has garnered extensive attention and application in real-time neural rendering. Concurrently, concerns have been raised about the limitations of this technology in aspects such as point cloud storage, performance, and robustness in sparse viewpoints, leading to various improvements. However, there has been a notable lack of attention to the fundamental problem of projection errors introduced by the local affine approximation inherent in the splatting itself, and the consequential impact of these errors on the quality of photo-realistic rendering. This paper addresses the projection error function of 3D Gaussian Splatting, commencing with the residual error from the first-order Taylor expansion of the projection function. The analysis establishes a correlation between the error and the Gaussian mean position. Subsequently, leveraging function optimization theory, this paper analyzes the function's minima to provide an optimal projection strategy for Gaussian Splatting referred to Optimal Gaussian Splatting, which can accommodate a variety of camera models. Experimental validation further confirms that this projection methodology reduces artifacts, resulting in a more convincingly realistic rendering.
February 2024. https://arxiv.org/abs/2402.00752
44 VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction Jiaqi Lin,Zhihao Li,Xiao Tang,Jianzhuang Liu,Shiyong Liu,Jiayue Liu,Yangdi Lu,Xiaofei Wu,Songcen Xu,Youliang Yan,Wenming Yang
AbstractExisting NeRF-based methods for large scene reconstruction often have limitations in visual quality and rendering speed. While the recent 3D Gaussian Splatting works well on small-scale and object-centric scenes, scaling it up to large scenes poses challenges due to limited video memory, long optimization time, and noticeable appearance variations. To address these challenges, we present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting. We propose a progressive partitioning strategy to divide a large scene into multiple cells, where the training cameras and point cloud are properly distributed with an airspace-aware visibility criterion. These cells are merged into a complete scene after parallel optimization. We also introduce decoupled appearance modeling into the optimization process to reduce appearance variations in the rendered images. Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets, enabling fast optimization and high-fidelity real-time rendering.
February 2024. https://arxiv.org/abs/2402.17427
43 SplatFlow: Learning Multi-frame Optical Flow via Splatting Bo Wang,Yifan Zhang,Jian Li,Yang Yu,Zhenping Sun,Li Liu,Dewen Hu
AbstractThe occlusion problem remains a crucial challenge in optical flow estimation (OFE). Despite the recent significant progress brought about by deep learning, most existing deep learning OFE methods still struggle to handle occlusions; in particular, those based on two frames cannot correctly handle occlusions because occluded regions have no visual correspondences. However, there is still hope in multi-frame settings, which can potentially mitigate the occlusion issue in OFE. Unfortunately, multi-frame OFE (MOFE) remains underexplored, and the limited studies on it are mainly specially designed for pyramid backbones or else obtain the aligned previous frame's features, such as correlation volume and optical flow, through time-consuming backward flow calculation or non-differentiable forward warping transformation. This study proposes an efficient MOFE framework named SplatFlow to address these shortcomings. SplatFlow introduces the differentiable splatting transformation to align the previous frame's motion feature and designs a Final-to-All embedding method to input the aligned motion feature into the current frame's estimation, thus remodeling the existing two-frame backbones. The proposed SplatFlow is efficient yet more accurate, as it can handle occlusions properly. Extensive experimental evaluations show that SplatFlow substantially outperforms all published methods on the KITTI2015 and Sintel benchmarks. Especially on the Sintel benchmark, SplatFlow achieves errors of 1.12 (clean pass) and 2.07 (final pass), with surprisingly significant 19.4% and 16.2% error reductions, respectively, from the previous best results submitted. The code for SplatFlow is available at https://github.com/wwsource/SplatFlow.
June 2023. https://arxiv.org/abs/2306.08887
42 Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting Ziyi Yang,Xinyu Gao,Yangtian Sun,Yihua Huang,Xiaoyang Lyu,Wen Zhou,Shaohui Jiao,Xiaojuan Qi,Xiaogang Jin
AbstractThe recent advancements in 3D Gaussian splatting (3D-GS) have not only facilitated real-time rendering through modern GPU rasterization pipelines but have also attained state-of-the-art rendering quality. Nevertheless, despite its exceptional rendering quality and performance on standard datasets, 3D-GS frequently encounters difficulties in accurately modeling specular and anisotropic components. This issue stems from the limited ability of spherical harmonics (SH) to represent high-frequency information. To overcome this challenge, we introduce Spec-Gaussian, an approach that utilizes an anisotropic spherical Gaussian (ASG) appearance field instead of SH for modeling the view-dependent appearance of each 3D Gaussian. Additionally, we have developed a coarse-to-fine training strategy to improve learning efficiency and eliminate floaters caused by overfitting in real-world scenes. Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality. Thanks to ASG, we have significantly improved the ability of 3D-GS to model scenes with specular and anisotropic components without increasing the number of 3D Gaussians. This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
February 2024. https://arxiv.org/abs/2402.15870
41 GaussianPro: 3D Gaussian Splatting with Progressive Propagation Kai Cheng,Xiaoxiao Long,Kaizhi Yang,Yao Yao,Wei Yin,Yuexin Ma,Wenping Wang,Xuejin Chen
AbstractThe advent of 3D Gaussian Splatting (3DGS) has recently brought about a revolution in the field of neural rendering, facilitating high-quality renderings at real-time speed. However, 3DGS heavily depends on the initialized point cloud produced by Structure-from-Motion (SfM) techniques. When tackling with large-scale scenes that unavoidably contain texture-less surfaces, the SfM techniques always fail to produce enough points in these surfaces and cannot provide good initialization for 3DGS. As a result, 3DGS suffers from difficult optimization and low-quality renderings. In this paper, inspired by classical multi-view stereo (MVS) techniques, we propose GaussianPro, a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians. Compared to the simple split and clone strategies used in 3DGS, our method leverages the priors of the existing reconstructed geometries of the scene and patch matching techniques to produce new Gaussians with accurate positions and orientations. Experiments on both large-scale and small-scale scenes validate the effectiveness of our method, where our method significantly surpasses 3DGS on the Waymo dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
February 2024. https://arxiv.org/abs/2402.14650
40 Real-time Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian Splatting Zeyu Yang,Hongye Yang,Zijie Pan,Li Zhang
AbstractReconstructing dynamic 3D scenes from 2D images and generating diverse views over time is challenging due to scene complexity and temporal dynamics. Despite advancements in neural implicit models, limitations persist: (i) Inadequate Scene Structure: Existing methods struggle to reveal the spatial and temporal structure of dynamic scenes from directly learning the complex 6D plenoptic function. (ii) Scaling Deformation Modeling: Explicitly modeling scene element deformation becomes impractical for complex dynamics. To address these issues, we consider the spacetime as an entirety and propose to approximate the underlying spatio-temporal 4D volume of a dynamic scene by optimizing a collection of 4D primitives, with explicit geometry and appearance modeling. Learning to optimize the 4D primitives enables us to synthesize novel views at any desired time with our tailored rendering routine. Our model is conceptually simple, consisting of a 4D Gaussian parameterized by anisotropic ellipses that can rotate arbitrarily in space and time, as well as view-dependent and time-evolved appearance represented by the coefficient of 4D spherindrical harmonics. This approach offers simplicity, flexibility for variable-length video and end-to-end training, and efficient real-time rendering, making it suitable for capturing complex dynamic scene motions. Experiments across various benchmarks, including monocular and multi-view scenarios, demonstrate our 4DGS model's superior visual quality and efficiency.
October 2023. https://arxiv.org/abs/2310.10642
39 Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting Joongho Jo,Hyeongwon Kim,Jongsun Park
Abstract3D Gaussian splatting (3D-GS) is a new rendering approach that outperforms the neural radiance field (NeRF) in terms of both speed and image quality. 3D-GS represents 3D scenes by utilizing millions of 3D Gaussians and projects these Gaussians onto the 2D image plane for rendering. However, during the rendering process, a substantial number of unnecessary 3D Gaussians exist for the current view direction, resulting in significant computation costs associated with their identification. In this paper, we propose a computational reduction technique that quickly identifies unnecessary 3D Gaussians in real-time for rendering the current view without compromising image quality. This is accomplished through the offline clustering of 3D Gaussians that are close in distance, followed by the projection of these clusters onto a 2D image plane during runtime. Additionally, we analyze the bottleneck associated with the proposed technique when executed on GPUs and propose an efficient hardware architecture that seamlessly supports the proposed scheme. For the Mip-NeRF360 dataset, the proposed technique excludes 63% of 3D Gaussians on average before the 2D image projection, which reduces the overall rendering computation by almost 38.3% without sacrificing peak-signal-to-noise-ratio (PSNR). The proposed accelerator also achieves a speedup of 10.7x compared to a GPU.
February 2024. https://arxiv.org/abs/2402.13827
38 GaussianObject: Just Taking Four Images to Get A High-Quality 3D Object with Gaussian Splatting Chen Yang,Sikuang Li,Jiemin Fang,Ruofan Liang,Lingxi Xie,Xiaopeng Zhang,Wei Shen,Qi Tian
AbstractReconstructing and rendering 3D objects from highly sparse views is of critical importance for promoting applications of 3D vision techniques and improving user experience. However, images from sparse views only contain very limited 3D information, leading to two significant challenges: 1) Difficulty in building multi-view consistency as images for matching are too few; 2) Partially omitted or highly compressed object information as view coverage is insufficient. To tackle these challenges, we propose GaussianObject, a framework to represent and render the 3D object with Gaussian splatting, that achieves high rendering quality with only 4 input images. We first introduce techniques of visual hull and floater elimination which explicitly inject structure priors into the initial optimization process for helping build multi-view consistency, yielding a coarse 3D Gaussian representation. Then we construct a Gaussian repair model based on diffusion models to supplement the omitted object information, where Gaussians are further refined. We design a self-generating strategy to obtain image pairs for training the repair model. Our GaussianObject is evaluated on several challenging datasets, including MipNeRF360, OmniObject3D, and OpenIllumination, achieving strong reconstruction results from only 4 views and significantly outperforming previous state-of-the-art methods.
February 2024. https://arxiv.org/abs/2402.10259
37 Gaussian Splatting with NeRF-based Color and Opacity Dawid Malarz,Weronika Smolak,Jacek Tabor,S\xc5\x82awomir Tadeja,Przemys\xc5\x82aw Spurek
AbstractNeural Radiance Fields (NeRFs) have demonstrated the remarkable potential of neural networks to capture the intricacies of 3D objects. By encoding the shape and color information within neural network weights, NeRFs excel at producing strikingly sharp novel views of 3D objects. Recently, numerous generalizations of NeRFs utilizing generative models have emerged, expanding its versatility. In contrast, Gaussian Splatting (GS) offers a similar render quality with faster training and inference as it does not need neural networks to work. We encode information about the 3D objects in the set of Gaussian distributions that can be rendered in 3D similarly to classical meshes. Unfortunately, GS are difficult to condition since they usually require circa hundred thousand Gaussian components. To mitigate the caveats of both models, we propose a hybrid model Viewing Direction Gaussian Splatting (VDGS) that uses GS representation of the 3D object's shape and NeRF-based encoding of color and opacity. Our model uses Gaussian distributions with trainable positions (i.e. means of Gaussian), shape (i.e. covariance of Gaussian), color and opacity, and neural network, which takes parameters of Gaussian and viewing direction to produce changes in color and opacity. Consequently, our model better describes shadows, light reflections, and transparency of 3D objects.
December 2023. https://arxiv.org/abs/2312.13729
36 GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering Abdullah Hamdi,Luke Melas-Kyriazi,Guocheng Qian,Jinjie Mai,Ruoshi Liu,Carl Vondrick,Bernard Ghanem,Andrea Vedaldi
AbstractAdvancements in 3D Gaussian Splatting have significantly accelerated 3D reconstruction and generation. However, it may require a large number of Gaussians, which creates a substantial memory footprint. This paper introduces GES (Generalized Exponential Splatting), a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes, requiring far fewer particles to represent a scene and thus significantly outperforming Gaussian Splatting methods in efficiency with a plug-and-play replacement ability for Gaussian-based utilities. GES is validated theoretically and empirically in both principled 1D setup and realistic 3D scenes. It is shown to represent signals with sharp edges more accurately, which are typically challenging for Gaussians due to their inherent low-pass characteristics. Our empirical analysis demonstrates that GEF outperforms Gaussians in fitting natural-occurring signals (e.g. squares, triangles, and parabolic signals), thereby reducing the need for extensive splitting operations that increase the memory footprint of Gaussian Splatting. With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks while requiring less than half the memory storage of Gaussian Splatting and increasing the rendering speed by up to 39%. The code is available on the project website https://abdullahamdi.com/ges .
February 2024. https://arxiv.org/abs/2402.10128
35 Compact 3D Gaussian Representation for Radiance Field Joo Chan Lee,Daniel Rho,Xiangyu Sun,Jong Hwan Ko,Eunbyung Park
AbstractNeural Radiance Fields (NeRFs) have demonstrated remarkable potential in capturing complex 3D scenes with high fidelity. However, one persistent challenge that hinders the widespread adoption of NeRFs is the computational bottleneck due to the volumetric rendering. On the other hand, 3D Gaussian splatting (3DGS) has recently emerged as an alternative representation that leverages a 3D Gaussisan-based representation and adopts the rasterization pipeline to render the images rather than volumetric rendering, achieving very fast rendering speed and promising image quality. However, a significant drawback arises as 3DGS entails a substantial number of 3D Gaussians to maintain the high fidelity of the rendered images, which requires a large amount of memory and storage. To address this critical issue, we place a specific emphasis on two key objectives: reducing the number of Gaussian points without sacrificing performance and compressing the Gaussian attributes, such as view-dependent color and covariance. To this end, we propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance. In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field rather than relying on spherical harmonics. Finally, we learn codebooks to compactly represent the geometric attributes of Gaussian by vector quantization. With model compression techniques such as quantization and entropy coding, we consistently show over 25$\times$ reduced storage and enhanced rendering speed, while maintaining the quality of the scene representation, compared to 3DGS. Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering. Our project page is available at https://maincold2.github.io/c3dgs/.
November 2023. https://arxiv.org/abs/2311.13681
34 GaMeS: Mesh-Based Adapting and Modification of Gaussian Splatting Joanna Waczy\xc5\x84ska,Piotr Borycki,S\xc5\x82awomir Tadeja,Jacek Tabor,Przemys\xc5\x82aw Spurek
AbstractRecently, a range of neural network-based methods for image rendering have been introduced. One such widely-researched neural radiance field (NeRF) relies on a neural network to represent 3D scenes, allowing for realistic view synthesis from a small number of 2D images. However, most NeRF models are constrained by long training and inference times. In comparison, Gaussian Splatting (GS) is a novel, state-of-the-art technique for rendering points in a 3D scene by approximating their contribution to image pixels through Gaussian distributions, warranting fast training and swift, real-time rendering. A drawback of GS is the absence of a well-defined approach for its conditioning due to the necessity to condition several hundred thousand Gaussian components. To solve this, we introduce the Gaussian Mesh Splatting (GaMeS) model, which allows modification of Gaussian components in a similar way as meshes. We parameterize each Gaussian component by the vertices of the mesh face. Furthermore, our model needs mesh initialization on input or estimated mesh during training. We also define Gaussian splats solely based on their location on the mesh, allowing for automatic adjustments in position, scale, and rotation during animation. As a result, we obtain a real-time rendering of editable GS.
February 2024. https://arxiv.org/abs/2402.01459
33 IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation Luke Melas-Kyriazi,Iro Laina,Christian Rupprecht,Natalia Neverova,Andrea Vedaldi,Oran Gafni,Filippos Kokkinos
AbstractMost text-to-3D generators build upon off-the-shelf text-to-image models trained on billions of images. They use variants of Score Distillation Sampling (SDS), which is slow, somewhat unstable, and prone to artifacts. A mitigation is to fine-tune the 2D generator to be multi-view aware, which can help distillation or can be combined with reconstruction networks to output 3D objects directly. In this paper, we further explore the design space of text-to-3D models. We significantly improve multi-view generation by considering video instead of image generators. Combined with a 3D reconstruction algorithm which, by using Gaussian splatting, can optimize a robust image-based loss, we directly produce high-quality 3D outputs from the generated views. Our new method, IM-3D, reduces the number of evaluations of the 2D generator network 10-100x, resulting in a much more efficient pipeline, better quality, fewer geometric inconsistencies, and higher yield of usable 3D assets.
February 2024. https://arxiv.org/abs/2402.08682
32 GS-CLIP: Gaussian Splatting for Contrastive Language-Image-3D Pretraining from Real-World Data Haoyuan Li,Yanpeng Zhou,Yihan Zeng,Hang Xu,Xiaodan Liang
Abstract3D Shape represented as point cloud has achieve advancements in multimodal pre-training to align image and language descriptions, which is curial to object identification, classification, and retrieval. However, the discrete representations of point cloud lost the object's surface shape information and creates a gap between rendering results and 2D correspondences. To address this problem, we propose GS-CLIP for the first attempt to introduce 3DGS (3D Gaussian Splatting) into multimodal pre-training to enhance 3D representation. GS-CLIP leverages a pre-trained vision-language model for a learned common visual and textual space on massive real world image-text pairs and then learns a 3D Encoder for aligning 3DGS optimized per object. Additionally, a novel Gaussian-Aware Fusion is proposed to extract and fuse global explicit feature. As a general framework for language-image-3D pre-training, GS-CLIP is agnostic to 3D backbone networks. Experiments on challenging shows that GS-CLIP significantly improves the state-of-the-art, outperforming the previously best results.
February 2024. https://arxiv.org/abs/2402.06198
31 EndoGaussian: Real-time Gaussian Splatting for Dynamic Endoscopic Scene Reconstruction Yifan Liu,Chenxin Li,Chen Yang,Yixuan Yuan
AbstractReconstructing deformable tissues from endoscopic videos is essential in many downstream surgical applications. However, existing methods suffer from slow rendering speed, greatly limiting their practical use. In this paper, we introduce EndoGaussian, a real-time endoscopic scene reconstruction framework built on 3D Gaussian Splatting (3DGS). By integrating the efficient Gaussian representation and highly-optimized rendering engine, our framework significantly boosts the rendering speed to a real-time level. To adapt 3DGS for endoscopic scenes, we propose two strategies, Holistic Gaussian Initialization (HGI) and Spatio-temporal Gaussian Tracking (SGT), to handle the non-trivial Gaussian initialization and tissue deformation problems, respectively. In HGI, we leverage recent depth estimation models to predict depth maps of input binocular/monocular image sequences, based on which pixels are re-projected and combined for holistic initialization. In SPT, we propose to model surface dynamics using a deformation field, which is composed of an efficient encoding voxel and a lightweight deformation decoder, allowing for Gaussian tracking with minor training and rendering burden. Experiments on public datasets demonstrate our efficacy against prior SOTAs in many aspects, including better rendering speed (195 FPS real-time, 100$\times$ gain), better rendering quality (37.848 PSNR), and less training overhead (within 2 min/scene), showing significant promise for intraoperative surgery applications. Code is available at: \url{https://yifliu3.github.io/EndoGaussian/}.
January 2024. https://arxiv.org/abs/2401.12561
30 EndoGS: Deformable Endoscopic Tissues Reconstruction with Gaussian Splatting Lingting Zhu,Zhao Wang,Jiahao Cui,Zhenchao Jin,Guying Lin,Lequan Yu
AbstractSurgical 3D reconstruction is a critical area of research in robotic surgery, with recent works adopting variants of dynamic radiance fields to achieve success in 3D reconstruction of deformable tissues from single-viewpoint videos. However, these methods often suffer from time-consuming optimization or inferior quality, limiting their adoption in downstream tasks. Inspired by 3D Gaussian Splatting, a recent trending 3D representation, we present EndoGS, applying Gaussian Splatting for deformable endoscopic tissue reconstruction. Specifically, our approach incorporates deformation fields to handle dynamic scenes, depth-guided supervision with spatial-temporal weight masks to optimize 3D targets with tool occlusion from a single viewpoint, and surface-aligned regularization terms to capture the much better geometry. As a result, EndoGS reconstructs and renders high-quality deformable endoscopic tissues from a single-viewpoint video, estimated depth maps, and labeled tool masks. Experiments on DaVinci robotic surgery videos demonstrate that EndoGS achieves superior rendering quality. Code is available at https://github.com/HKU-MedAI/EndoGS.
January 2024. https://arxiv.org/abs/2401.11535
29 GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting Xiaoyu Zhou,Xingjian Ran,Yajiao Xiong,Jinlin He,Zhiwei Lin,Yongtao Wang,Deqing Sun,Ming-Hsuan Yang
AbstractWe present GALA3D, generative 3D GAussians with LAyout-guided control, for effective compositional text-to-3D generation. We first utilize large language models (LLMs) to generate the initial layout and introduce a layout-guided 3D Gaussian representation for 3D content generation with adaptive geometric constraints. We then propose an object-scene compositional optimization mechanism with conditioned diffusion to collaboratively generate realistic 3D scenes with consistent geometry, texture, scale, and accurate interactions among multiple objects while simultaneously adjusting the coarse layout priors extracted from the LLMs to align with the generated scene. Experiments show that GALA3D is a user-friendly, end-to-end framework for state-of-the-art scene-level 3D content generation and controllable editing while ensuring the high fidelity of object-level entities within the scene. Source codes and models will be available at https://gala3d.github.io/.
February 2024. https://arxiv.org/abs/2402.07207
28 3D Gaussian as a New Vision Era: A Survey Ben Fei,Jingyi Xu,Rui Zhang,Qingyuan Zhou,Weidong Yang,Ying He
Abstract3D Gaussian Splatting (3D-GS) has emerged as a significant advancement in the field of Computer Graphics, offering explicit scene representation and novel view synthesis without the reliance on neural networks, such as Neural Radiance Fields (NeRF). This technique has found diverse applications in areas such as robotics, urban mapping, autonomous navigation, and virtual reality/augmented reality, just name a few. Given the growing popularity and expanding research in 3D Gaussian Splatting, this paper presents a comprehensive survey of relevant papers from the past year. We organize the survey into taxonomies based on characteristics and applications, providing an introduction to the theoretical underpinnings of 3D Gaussian Splatting. Our goal through this survey is to acquaint new researchers with 3D Gaussian Splatting, serve as a valuable reference for seminal works in the field, and inspire future research directions, as discussed in our concluding section.
February 2024. https://arxiv.org/abs/2402.07181
27 ImplicitDeepfake: Plausible Face-Swapping through Implicit Deepfake Generation using NeRF and Gaussian Splatting Georgii Stanishevskii,Jakub Steczkiewicz,Tomasz Szczepanik,S\xc5\x82awomir Tadeja,Jacek Tabor,Przemys\xc5\x82aw Spurek
AbstractNumerous emerging deep-learning techniques have had a substantial impact on computer graphics. Among the most promising breakthroughs are the recent rise of Neural Radiance Fields (NeRFs) and Gaussian Splatting (GS). NeRFs encode the object's shape and color in neural network weights using a handful of images with known camera positions to generate novel views. In contrast, GS provides accelerated training and inference without a decrease in rendering quality by encoding the object's characteristics in a collection of Gaussian distributions. These two techniques have found many use cases in spatial computing and other domains. On the other hand, the emergence of deepfake methods has sparked considerable controversy. Such techniques can have a form of artificial intelligence-generated videos that closely mimic authentic footage. Using generative models, they can modify facial features, enabling the creation of altered identities or facial expressions that exhibit a remarkably realistic appearance to a real person. Despite these controversies, deepfake can offer a next-generation solution for avatar creation and gaming when of desirable quality. To that end, we show how to combine all these emerging technologies to obtain a more plausible outcome. Our ImplicitDeepfake1 uses the classical deepfake algorithm to modify all training images separately and then train NeRF and GS on modified faces. Such relatively simple strategies can produce plausible 3D deepfake-based avatars.
February 2024. https://arxiv.org/abs/2402.06390
26 HeadStudio: Text to Animatable Head Avatars with 3D Gaussian Splatting Zhenglin Zhou,Fan Ma,Hehe Fan,Yi Yang
AbstractCreating digital avatars from textual prompts has long been a desirable yet challenging task. Despite the promising outcomes obtained through 2D diffusion priors in recent works, current methods face challenges in achieving high-quality and animated avatars effectively. In this paper, we present $\textbf{HeadStudio}$, a novel framework that utilizes 3D Gaussian splatting to generate realistic and animated avatars from text prompts. Our method drives 3D Gaussians semantically to create a flexible and achievable appearance through the intermediate FLAME representation. Specifically, we incorporate the FLAME into both 3D representation and score distillation: 1) FLAME-based 3D Gaussian splatting, driving 3D Gaussian points by rigging each point to a FLAME mesh. 2) FLAME-based score distillation sampling, utilizing FLAME-based fine-grained control signal to guide score distillation from the text prompt. Extensive experiments demonstrate the efficacy of HeadStudio in generating animatable avatars from textual prompts, exhibiting visually appealing appearances. The avatars are capable of rendering high-quality real-time ($\geq 40$ fps) novel views at a resolution of 1024. They can be smoothly controlled by real-world speech and video. We hope that HeadStudio can advance digital avatar creation and that the present method can widely be applied across various domains.
February 2024. https://arxiv.org/abs/2402.06149
25 Neural Graphics Primitives-based Deformable Image Registration for On-the-fly Motion Extraction Xia Li,Fabian Zhang,Muheng Li,Damien Weber,Antony Lomax,Joachim Buhmann,Ye Zhang
AbstractIntra-fraction motion in radiotherapy is commonly modeled using deformable image registration (DIR). However, existing methods often struggle to balance speed and accuracy, limiting their applicability in clinical scenarios. This study introduces a novel approach that harnesses Neural Graphics Primitives (NGP) to optimize the displacement vector field (DVF). Our method leverages learned primitives, processed as splats, and interpolates within space using a shallow neural network. Uniquely, it enables self-supervised optimization at an ultra-fast speed, negating the need for pre-training on extensive datasets and allowing seamless adaptation to new cases. We validated this approach on the 4D-CT lung dataset DIR-lab, achieving a target registration error (TRE) of 1.15\pm1.15 mm within a remarkable time of 1.77 seconds. Notably, our method also addresses the sliding boundary problem, a common challenge in conventional DIR methods.
February 2024. https://arxiv.org/abs/2402.05568
24 4D Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes Yuanxing Duan,Fangyin Wei,Qiyu Dai,Yuhang He,Wenzheng Chen,Baoquan Chen
AbstractWe consider the problem of novel view synthesis (NVS) for dynamic scenes. Recent neural approaches have accomplished exceptional NVS results for static 3D scenes, but extensions to 4D time-varying scenes remain non-trivial. Prior efforts often encode dynamics by learning a canonical space plus implicit or explicit deformation fields, which struggle in challenging scenarios like sudden movements or capturing high-fidelity renderings. In this paper, we introduce 4D Gaussian Splatting (4DGS), a novel method that represents dynamic scenes with anisotropic 4D XYZT Gaussians, inspired by the success of 3D Gaussian Splatting in static scenes. We model dynamics at each timestamp by temporally slicing the 4D Gaussians, which naturally compose dynamic 3D Gaussians and can be seamlessly projected into images. As an explicit spatial-temporal representation, 4DGS demonstrates powerful capabilities for modeling complicated dynamics and fine details, especially for scenes with abrupt motions. We further implement our temporal slicing and splatting techniques in a highly optimized CUDA acceleration framework, achieving real-time inference rendering speeds of up to 277 FPS on an RTX 3090 GPU and 583 FPS on an RTX 4090 GPU. Rigorous evaluations on scenes with diverse motions showcase the superior efficiency and effectiveness of 4DGS, which consistently outperforms existing methods both quantitatively and qualitatively.
February 2024. https://arxiv.org/abs/2402.03307
23 Mesh-based Gaussian Splatting for Real-time Large-scale Deformation Lin Gao,Jie Yang,Bo-Tao Zhang,Jia-Mu Sun,Yu-Jie Yuan,Hongbo Fu,Yu-Kun Lai
AbstractNeural implicit representations, including Neural Distance Fields and Neural Radiance Fields, have demonstrated significant capabilities for reconstructing surfaces with complicated geometry and topology, and generating novel views of a scene. Nevertheless, it is challenging for users to directly deform or manipulate these implicit representations with large deformations in the real-time fashion. Gaussian Splatting(GS) has recently become a promising method with explicit geometry for representing static scenes and facilitating high-quality and real-time synthesis of novel views. However,it cannot be easily deformed due to the use of discrete Gaussians and lack of explicit topology. To address this, we develop a novel GS-based method that enables interactive deformation. Our key idea is to design an innovative mesh-based GS representation, which is integrated into Gaussian learning and manipulation. 3D Gaussians are defined over an explicit mesh, and they are bound with each other: the rendering of 3D Gaussians guides the mesh face split for adaptive refinement, and the mesh face split directs the splitting of 3D Gaussians. Moreover, the explicit mesh constraints help regularize the Gaussian distribution, suppressing poor-quality Gaussians(e.g. misaligned Gaussians,long-narrow shaped Gaussians), thus enhancing visual quality and avoiding artifacts during deformation. Based on this representation, we further introduce a large-scale Gaussian deformation technique to enable deformable GS, which alters the parameters of 3D Gaussians according to the manipulation of the associated mesh. Our method benefits from existing mesh deformation datasets for more realistic data-driven Gaussian deformation. Extensive experiments show that our approach achieves high-quality reconstruction and effective deformation, while maintaining the promising rendering results at a high frame rate(65 FPS on average).
February 2024. https://arxiv.org/abs/2402.04796
22 Rig3DGS: Creating Controllable Portraits from Casual Monocular Videos Alfredo Rivero,ShahRukh Athar,Zhixin Shu,Dimitris Samaras
AbstractCreating controllable 3D human portraits from casual smartphone videos is highly desirable due to their immense value in AR/VR applications. The recent development of 3D Gaussian Splatting (3DGS) has shown improvements in rendering quality and training efficiency. However, it still remains a challenge to accurately model and disentangle head movements and facial expressions from a single-view capture to achieve high-quality renderings. In this paper, we introduce Rig3DGS to address this challenge. We represent the entire scene, including the dynamic subject, using a set of 3D Gaussians in a canonical space. Using a set of control signals, such as head pose and expressions, we transform them to the 3D space with learned deformations to generate the desired rendering. Our key innovation is a carefully designed deformation method which is guided by a learnable prior derived from a 3D morphable model. This approach is highly efficient in training and effective in controlling facial expressions, head positions, and view synthesis across various captures. We demonstrate the effectiveness of our learned deformation through extensive quantitative and qualitative experiments. The project page can be found at http://shahrukhathar.github.io/2024/02/05/Rig3DGS.html
February 2024. https://arxiv.org/abs/2402.03723
21 360-GS: Layout-guided Panoramic Gaussian Splatting For Indoor Roaming Jiayang Bai,Letian Huang,Jie Guo,Wen Gong,Yuanqi Li,Yanwen Guo
Abstract3D Gaussian Splatting (3D-GS) has recently attracted great attention with real-time and photo-realistic renderings. This technique typically takes perspective images as input and optimizes a set of 3D elliptical Gaussians by splatting them onto the image planes, resulting in 2D Gaussians. However, applying 3D-GS to panoramic inputs presents challenges in effectively modeling the projection onto the spherical surface of ${360^\circ}$ images using 2D Gaussians. In practical applications, input panoramas are often sparse, leading to unreliable initialization of 3D Gaussians and subsequent degradation of 3D-GS quality. In addition, due to the under-constrained geometry of texture-less planes (e.g., walls and floors), 3D-GS struggles to model these flat regions with elliptical Gaussians, resulting in significant floaters in novel views. To address these issues, we propose 360-GS, a novel $360^{\circ}$ Gaussian splatting for a limited set of panoramic inputs. Instead of splatting 3D Gaussians directly onto the spherical surface, 360-GS projects them onto the tangent plane of the unit sphere and then maps them to the spherical projections. This adaptation enables the representation of the projection using Gaussians. We guide the optimization of 360-GS by exploiting layout priors within panoramas, which are simple to obtain and contain strong structural information about the indoor scene. Our experimental results demonstrate that 360-GS allows panoramic rendering and outperforms state-of-the-art methods with fewer artifacts in novel view synthesis, thus providing immersive roaming in indoor scenarios.
February 2024. https://arxiv.org/abs/2402.00763
20 StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering Lukas Radl,Michael Steiner,Mathias Parger,Alexander Weinrauch,Bernhard Kerbl,Markus Steinberger
AbstractGaussian Splatting has emerged as a prominent model for constructing 3D representations from images across diverse domains. However, the efficiency of the 3D Gaussian Splatting rendering pipeline relies on several simplifications. Notably, reducing Gaussian to 2D splats with a single view-space depth introduces popping and blending artifacts during view rotation. Addressing this issue requires accurate per-pixel depth computation, yet a full per-pixel sort proves excessively costly compared to a global sort operation. In this paper, we present a novel hierarchical rasterization approach that systematically resorts and culls splats with minimal processing overhead. Our software rasterizer effectively eliminates popping artifacts and view inconsistencies, as demonstrated through both quantitative and qualitative measurements. Simultaneously, our method mitigates the potential for cheating view-dependent effects with popping, ensuring a more authentic representation. Despite the elimination of cheating, our approach achieves comparable quantitative results for test images, while increasing the consistency for novel view synthesis in motion. Due to its design, our hierarchical approach is only 4% slower on average than the original Gaussian Splatting. Notably, enforcing consistency enables a reduction in the number of Gaussians by approximately half with nearly identical quality and view-consistency. Consequently, rendering performance is nearly doubled, making our approach 1.6x faster than the original Gaussian Splatting, with a 50% reduction in memory requirements.
February 2024. https://arxiv.org/abs/2402.00525
19 Segment Anything in 3D Gaussians Xu Hu,Yuxi Wang,Lue Fan,Junsong Fan,Junran Peng,Zhen Lei,Qing Li,Zhaoxiang Zhang
Abstract3D Gaussian Splatting has emerged as an alternative 3D representation of Neural Radiance Fields (NeRFs), benefiting from its high-quality rendering results and real-time rendering speed. Considering the 3D Gaussian representation remains unparsed, it is necessary first to execute object segmentation within this domain. Subsequently, scene editing and collision detection can be performed, proving vital to a multitude of applications, such as virtual reality (VR), augmented reality (AR), game/movie production, etc. In this paper, we propose a novel approach to achieve object segmentation in 3D Gaussian via an interactive procedure without any training process and learned parameters. We refer to the proposed method as SA-GS, for Segment Anything in 3D Gaussians. Given a set of clicked points in a single input view, SA-GS can generalize SAM to achieve 3D consistent segmentation via the proposed multi-view mask generation and view-wise label assignment methods. We also propose a cross-view label-voting approach to assign labels from different views. In addition, in order to address the boundary roughness issue of segmented objects resulting from the non-negligible spatial sizes of 3D Gaussian located at the boundary, SA-GS incorporates the simple but effective Gaussian Decomposition scheme. Extensive experiments demonstrate that SA-GS achieves high-quality 3D segmentation results, which can also be easily applied for scene editing and collision detection tasks. Codes will be released soon.
January 2024. https://arxiv.org/abs/2401.17857
18 CoSSegGaussians: Compact and Swift Scene Segmenting 3D Gaussians with Dual Feature Fusion Bin Dou,Tianyu Zhang,Yongjia Ma,Zhaohui Wang,Zejian Yuan
AbstractWe propose Compact and Swift Segmenting 3D Gaussians(CoSSegGaussians), a method for compact 3D-consistent scene segmentation at fast rendering speed with only RGB images input. Previous NeRF-based segmentation methods have relied on time-consuming neural scene optimization. While recent 3D Gaussian Splatting has notably improved speed, existing Gaussian-based segmentation methods struggle to produce compact masks, especially in zero-shot segmentation. This issue probably stems from their straightforward assignment of learnable parameters to each Gaussian, resulting in a lack of robustness against cross-view inconsistent 2D machine-generated labels. Our method aims to address this problem by employing Dual Feature Fusion Network as Gaussians' segmentation field. Specifically, we first optimize 3D Gaussians under RGB supervision. After Gaussian Locating, DINO features extracted from images are applied through explicit unprojection, which are further incorporated with spatial features from the efficient point cloud processing network. Feature aggregation is utilized to fuse them in a global-to-local strategy for compact segmentation features. Experimental results show that our model outperforms baselines on both semantic and panoptic zero-shot segmentation task, meanwhile consumes less than 10% inference time compared to NeRF-based methods. Code and more results will be available at https://David-Dou.github.io/CoSSegGaussians
January 2024. https://arxiv.org/abs/2401.05925
17 PSAvatar: A Point-based Morphable Shape Model for Real-Time Head Avatar Animation with 3D Gaussian Splatting Zhongyuan Zhao,Zhenyu Bao,Qing Li,Guoping Qiu,Kanglin Liu
AbstractDespite much progress, achieving real-time high-fidelity head avatar animation is still difficult and existing methods have to trade-off between speed and quality. 3DMM based methods often fail to model non-facial structures such as eyeglasses and hairstyles, while neural implicit models suffer from deformation inflexibility and rendering inefficiency. Although 3D Gaussian has been demonstrated to possess promising capability for geometry representation and radiance field reconstruction, applying 3D Gaussian in head avatar creation remains a major challenge since it is difficult for 3D Gaussian to model the head shape variations caused by changing poses and expressions. In this paper, we introduce PSAvatar, a novel framework for animatable head avatar creation that utilizes discrete geometric primitive to create a parametric morphable shape model and employs 3D Gaussian for fine detail representation and high fidelity rendering. The parametric morphable shape model is a Point-based Morphable Shape Model (PMSM) which uses points instead of meshes for 3D representation to achieve enhanced representation flexibility. The PMSM first converts the FLAME mesh to points by sampling on the surfaces as well as off the meshes to enable the reconstruction of not only surface-like structures but also complex geometries such as eyeglasses and hairstyles. By aligning these points with the head shape in an analysis-by-synthesis manner, the PMSM makes it possible to utilize 3D Gaussian for fine detail representation and appearance modeling, thus enabling the creation of high-fidelity avatars. We show that PSAvatar can reconstruct high-fidelity head avatars of a variety of subjects and the avatars can be animated in real-time ($\ge$ 25 fps at a resolution of 512 $\times$ 512 ).
January 2024. https://arxiv.org/abs/2401.12900
16 GaussianBody: Clothed Human Reconstruction via 3d Gaussian Splatting Mengtian Li,Shengxiang Yao,Zhifeng Xie,Keyu Chen
AbstractIn this work, we propose a novel clothed human reconstruction method called GaussianBody, based on 3D Gaussian Splatting. Compared with the costly neural radiance based models, 3D Gaussian Splatting has recently demonstrated great performance in terms of training time and rendering quality. However, applying the static 3D Gaussian Splatting model to the dynamic human reconstruction problem is non-trivial due to complicated non-rigid deformations and rich cloth details. To address these challenges, our method considers explicit pose-guided deformation to associate dynamic Gaussians across the canonical space and the observation space, introducing a physically-based prior with regularized transformations helps mitigate ambiguity between the two spaces. During the training process, we further propose a pose refinement strategy to update the pose regression for compensating the inaccurate initial estimation and a split-with-scale mechanism to enhance the density of regressed point clouds. The experiments validate that our method can achieve state-of-the-art photorealistic novel-view rendering results with high-quality details for dynamic clothed human bodies, along with explicit geometry reconstruction.
January 2024. https://arxiv.org/abs/2401.09720
15 Gaussian Splashing: Dynamic Fluid Synthesis with Gaussian Splatting Yutao Feng,Xiang Feng,Yintong Shang,Ying Jiang,Chang Yu,Zeshun Zong,Tianjia Shao,Hongzhi Wu,Kun Zhou,Chenfanfu Jiang,Yin Yang
AbstractWe demonstrate the feasibility of integrating physics-based animations of solids and fluids with 3D Gaussian Splatting (3DGS) to create novel effects in virtual scenes reconstructed using 3DGS. Leveraging the coherence of the Gaussian splatting and position-based dynamics (PBD) in the underlying representation, we manage rendering, view synthesis, and the dynamics of solids and fluids in a cohesive manner. Similar to Gaussian shader, we enhance each Gaussian kernel with an added normal, aligning the kernel's orientation with the surface normal to refine the PBD simulation. This approach effectively eliminates spiky noises that arise from rotational deformation in solids. It also allows us to integrate physically based rendering to augment the dynamic surface reflections on fluids. Consequently, our framework is capable of realistically reproducing surface highlights on dynamic fluids and facilitating interactions between scene objects and fluids from new views. For more information, please visit our project page at \url{https://amysteriouscat.github.io/GaussianSplashing/}.
January 2024. https://arxiv.org/abs/2401.15318
14 GauU-Scene: A Scene Reconstruction Benchmark on Large Scale 3D Reconstruction Dataset Using Gaussian Splatting Butian Xiong,Zhuo Li,Zhen Li
AbstractWe introduce a novel large-scale scene reconstruction benchmark using the newly developed 3D representation approach, Gaussian Splatting, on our expansive U-Scene dataset. U-Scene encompasses over one and a half square kilometres, featuring a comprehensive RGB dataset coupled with LiDAR ground truth. For data acquisition, we employed the Matrix 300 drone equipped with the high-accuracy Zenmuse L1 LiDAR, enabling precise rooftop data collection. This dataset, offers a unique blend of urban and academic environments for advanced spatial analysis convers more than 1.5 km$^2$. Our evaluation of U-Scene with Gaussian Splatting includes a detailed analysis across various novel viewpoints. We also juxtapose these results with those derived from our accurate point cloud dataset, highlighting significant differences that underscore the importance of combine multi-modal information
January 2024. https://arxiv.org/abs/2401.14032
13 EndoGaussians: Single View Dynamic Gaussian Splatting for Deformable Endoscopic Tissues Reconstruction Yangsen Chen,Hao Wang
AbstractThe accurate 3D reconstruction of deformable soft body tissues from endoscopic videos is a pivotal challenge in medical applications such as VR surgery and medical image analysis. Existing methods often struggle with accuracy and the ambiguity of hallucinated tissue parts, limiting their practical utility. In this work, we introduce EndoGaussians, a novel approach that employs Gaussian Splatting for dynamic endoscopic 3D reconstruction. This method marks the first use of Gaussian Splatting in this context, overcoming the limitations of previous NeRF-based techniques. Our method sets new state-of-the-art standards, as demonstrated by quantitative assessments on various endoscope datasets. These advancements make our method a promising tool for medical professionals, offering more reliable and efficient 3D reconstructions for practical applications in the medical field.
January 2024. https://arxiv.org/abs/2401.13352
12 Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis Simon Niedermayr,Josef Stumpfegger,R\xc3\xbcdiger Westermann
AbstractRecently, high-fidelity scene reconstruction with an optimized 3D Gaussian splat representation has been introduced for novel view synthesis from sparse image sets. Making such representations suitable for applications like network streaming and rendering on low-power devices requires significantly reduced memory consumption as well as improved rendering efficiency. We propose a compressed 3D Gaussian splat representation that utilizes sensitivity-aware vector clustering with quantization-aware training to compress directional colors and Gaussian parameters. The learned codebooks have low bitrates and achieve a compression rate of up to $31\times$ on real-world scenes with only minimal degradation of visual quality. We demonstrate that the compressed splat representation can be efficiently rendered with hardware rasterization on lightweight GPUs at up to $4\times$ higher framerates than reported via an optimized GPU compute pipeline. Extensive experiments across multiple datasets demonstrate the robustness and rendering speed of the proposed approach.
January 2024. https://arxiv.org/abs/2401.02436
11 Slicer Networks Hang Zhang,Xiang Chen,Rongguang Wang,Renjiu Hu,Dongdong Liu,Gaolei Li
AbstractIn medical imaging, scans often reveal objects with varied contrasts but consistent internal intensities or textures. This characteristic enables the use of low-frequency approximations for tasks such as segmentation and deformation field estimation. Yet, integrating this concept into neural network architectures for medical image analysis remains underexplored. In this paper, we propose the Slicer Network, a novel architecture designed to leverage these traits. Comprising an encoder utilizing models like vision transformers for feature extraction and a slicer employing a learnable bilateral grid, the Slicer Network strategically refines and upsamples feature maps via a splatting-blurring-slicing process. This introduces an edge-preserving low-frequency approximation for the network outcome, effectively enlarging the effective receptive field. The enhancement not only reduces computational complexity but also boosts overall performance. Experiments across different medical imaging applications, including unsupervised and keypoints-based image registration and lesion segmentation, have verified the Slicer Network's improved accuracy and efficiency.
January 2024. https://arxiv.org/abs/2401.09833
10 Forging Vision Foundation Models for Autonomous Driving: Challenges, Methodologies, and Opportunities Xu Yan,Haiming Zhang,Yingjie Cai,Jingming Guo,Weichao Qiu,Bin Gao,Kaiqiang Zhou,Yue Zhao,Huan Jin,Jiantao Gao,Zhen Li,Lihui Jiang,Wei Zhang,Hongbo Zhang,Dengxin Dai,Bingbing Liu
AbstractThe rise of large foundation models, trained on extensive datasets, is revolutionizing the field of AI. Models such as SAM, DALL-E2, and GPT-4 showcase their adaptability by extracting intricate patterns and performing effectively across diverse tasks, thereby serving as potent building blocks for a wide range of AI applications. Autonomous driving, a vibrant front in AI applications, remains challenged by the lack of dedicated vision foundation models (VFMs). The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs in this field. This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions. Through a systematic analysis of over 250 papers, we dissect essential techniques for VFM development, including data preparation, pre-training strategies, and downstream task adaptation. Moreover, we explore key advancements such as NeRF, diffusion models, 3D Gaussian Splatting, and world models, presenting a comprehensive roadmap for future research. To empower researchers, we have built and maintained https://github.com/zhanghm1995/Forge_VFM4AD, an open-access repository constantly updated with the latest advancements in forging VFMs for autonomous driving.
January 2024. https://arxiv.org/abs/2401.08045
9 Gaussian Shadow Casting for Neural Characters Luis Bolanos,Shih-Yang Su,Helge Rhodin
AbstractNeural character models can now reconstruct detailed geometry and texture from video, but they lack explicit shadows and shading, leading to artifacts when generating novel views and poses or during relighting. It is particularly difficult to include shadows as they are a global effect and the required casting of secondary rays is costly. We propose a new shadow model using a Gaussian density proxy that replaces sampling with a simple analytic formula. It supports dynamic motion and is tailored for shadow computation, thereby avoiding the affine projection approximation and sorting required by the closely related Gaussian splatting. Combined with a deferred neural rendering model, our Gaussian shadows enable Lambertian shading and shadow casting with minimal overhead. We demonstrate improved reconstructions, with better separation of albedo, shading, and shadows in challenging outdoor scenes with direct sun light and hard shadows. Our method is able to optimize the light direction without any input from the user. As a result, novel poses have fewer shadow artifacts and relighting in novel scenes is more realistic compared to the state-of-the-art methods, providing new ways to pose neural characters in novel environments, increasing their applicability.
January 2024. https://arxiv.org/abs/2401.06116
8 AGG: Amortized Generative 3D Gaussians for Single Image to 3D Dejia Xu,Ye Yuan,Morteza Mardani,Sifei Liu,Jiaming Song,Zhangyang Wang,Arash Vahdat
AbstractGiven the growing need for automatic 3D content creation pipelines, various 3D representations have been studied to generate 3D objects from a single image. Due to its superior rendering efficiency, 3D Gaussian splatting-based models have recently excelled in both 3D reconstruction and generation. 3D Gaussian splatting approaches for image to 3D generation are often optimization-based, requiring many computationally expensive score-distillation steps. To overcome these challenges, we introduce an Amortized Generative 3D Gaussian framework (AGG) that instantly produces 3D Gaussians from a single image, eliminating the need for per-instance optimization. Utilizing an intermediate hybrid representation, AGG decomposes the generation of 3D Gaussian locations and other appearance attributes for joint optimization. Moreover, we propose a cascaded pipeline that first generates a coarse representation of the 3D data and later upsamples it with a 3D Gaussian super-resolution module. Our method is evaluated against existing optimization-based 3D Gaussian frameworks and sampling-based pipelines utilizing other 3D representations, where AGG showcases competitive generation abilities both qualitatively and quantitatively while being several orders of magnitude faster. Project page: https://ir1d.github.io/AGG/
January 2024. https://arxiv.org/abs/2401.04099
7 Progress and Prospects in 3D Generative AI: A Technical Overview including 3D human Song Bai,Jie Li
AbstractWhile AI-generated text and 2D images continue to expand its territory, 3D generation has gradually emerged as a trend that cannot be ignored. Since the year 2023 an abundant amount of research papers has emerged in the domain of 3D generation. This growth encompasses not just the creation of 3D objects, but also the rapid development of 3D character and motion generation. Several key factors contribute to this progress. The enhanced fidelity in stable diffusion, coupled with control methods that ensure multi-view consistency, and realistic human models like SMPL-X, contribute synergistically to the production of 3D models with remarkable consistency and near-realistic appearances. The advancements in neural network-based 3D storing and rendering models, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have accelerated the efficiency and realism of neural rendered models. Furthermore, the multimodality capabilities of large language models have enabled language inputs to transcend into human motion outputs. This paper aims to provide a comprehensive overview and summary of the relevant papers published mostly during the latter half year of 2023. It will begin by discussing the AI generated object models in 3D, followed by the generated 3D human models, and finally, the generated 3D human motions, culminating in a conclusive summary and a vision for the future.
January 2024. https://arxiv.org/abs/2401.02620
6 Characterizing Satellite Geometry via Accelerated 3D Gaussian Splatting Van Minh Nguyen,Emma Sandidge,Trupti Mahendrakar,Ryan T. White
AbstractThe accelerating deployment of spacecraft in orbit have generated interest in on-orbit servicing (OOS), inspection of spacecraft, and active debris removal (ADR). Such missions require precise rendezvous and proximity operations in the vicinity of non-cooperative, possible unknown, resident space objects. Safety concerns with manned missions and lag times with ground-based control necessitate complete autonomy. This requires robust characterization of the target's geometry. In this article, we present an approach for mapping geometries of satellites on orbit based on 3D Gaussian Splatting that can run on computing resources available on current spaceflight hardware. We demonstrate model training and 3D rendering performance on a hardware-in-the-loop satellite mock-up under several realistic lighting and motion conditions. Our model is shown to be capable of training on-board and rendering higher quality novel views of an unknown satellite nearly 2 orders of magnitude faster than previous NeRF-based algorithms. Such on-board capabilities are critical to enable downstream machine intelligence tasks necessary for autonomous guidance, navigation, and control tasks.
January 2024. https://arxiv.org/abs/2401.02588
5 PEGASUS: Physically Enhanced Gaussian Splatting Simulation System for 6DOF Object Pose Dataset Generation Lukas Meyer,Floris Erich,Yusuke Yoshiyasu,Marc Stamminger,Noriaki Ando,Yukiyasu Domae
AbstractWe introduce Physically Enhanced Gaussian Splatting Simulation System (PEGASUS) for 6DOF object pose dataset generation, a versatile dataset generator based on 3D Gaussian Splatting. Environment and object representations can be easily obtained using commodity cameras to reconstruct with Gaussian Splatting. PEGASUS allows the composition of new scenes by merging the respective underlying Gaussian Splatting point cloud of an environment with one or multiple objects. Leveraging a physics engine enables the simulation of natural object placement within a scene through interaction between meshes extracted for the objects and the environment. Consequently, an extensive amount of new scenes - static or dynamic - can be created by combining different environments and objects. By rendering scenes from various perspectives, diverse data points such as RGB images, depth maps, semantic masks, and 6DoF object poses can be extracted. Our study demonstrates that training on data generated by PEGASUS enables pose estimation networks to successfully transfer from synthetic data to real-world data. Moreover, we introduce the Ramen dataset, comprising 30 Japanese cup noodle items. This dataset includes spherical scans that captures images from both object hemisphere and the Gaussian Splatting reconstruction, making them compatible with PEGASUS.
January 2024. https://arxiv.org/abs/2401.02281
4 Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot Images Jaeyoung Chung,Jeongtaek Oh,Kyoung Mu Lee
AbstractIn this paper, we present a method to optimize Gaussian splatting with a limited number of images while avoiding overfitting. Representing a 3D scene by combining numerous Gaussian splats has yielded outstanding visual quality. However, it tends to overfit the training views when only a small number of images are available. To address this issue, we introduce a dense depth map as a geometry guide to mitigate overfitting. We obtained the depth map using a pre-trained monocular depth estimation model and aligning the scale and offset using sparse COLMAP feature points. The adjusted depth aids in the color-based optimization of 3D Gaussian splatting, mitigating floating artifacts, and ensuring adherence to geometric constraints. We verify the proposed method on the NeRF-LLFF dataset with varying numbers of few images. Our approach demonstrates robust geometry compared to the original method that relies solely on images. Project page: robot0321.github.io/DepthRegGS
November 2023. https://arxiv.org/abs/2311.13398
3 Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models Huan Ling,Seung Wook Kim,Antonio Torralba,Sanja Fidler,Karsten Kreis
AbstractText-guided diffusion models have revolutionized image and video generation and have also been successfully used for optimization-based 3D object synthesis. Here, we instead focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects using score distillation methods with an additional temporal dimension. Compared to previous work, we pursue a novel compositional generation-based approach, and combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization, thereby simultaneously enforcing temporal consistency, high-quality visual appearance and realistic geometry. Our method, called Align Your Gaussians (AYG), leverages dynamic 3D Gaussian Splatting with deformation fields as 4D representation. Crucial to AYG is a novel method to regularize the distribution of the moving 3D Gaussians and thereby stabilize the optimization and induce motion. We also propose a motion amplification mechanism as well as a new autoregressive synthesis scheme to generate and combine multiple 4D sequences for longer generation. These techniques allow us to synthesize vivid dynamic scenes, outperform previous work qualitatively and quantitatively and achieve state-of-the-art text-to-4D performance. Due to the Gaussian 4D representation, different 4D animations can be seamlessly combined, as we demonstrate. AYG opens up promising avenues for animation, simulation and digital content creation as well as synthetic data generation.
December 2023. https://arxiv.org/abs/2312.13763
2 Street Gaussians for Modeling Dynamic Urban Scenes Yunzhi Yan,Haotong Lin,Chenxu Zhou,Weijie Wang,Haiyang Sun,Kun Zhan,Xianpeng Lang,Xiaowei Zhou,Sida Peng
AbstractThis paper aims to tackle the problem of modeling dynamic urban street scenes from monocular videos. Recent methods extend NeRF by incorporating tracked vehicle poses to animate vehicles, enabling photo-realistic view synthesis of dynamic urban street scenes. However, significant limitations are their slow training and rendering speed, coupled with the critical need for high precision in tracked vehicle poses. We introduce Street Gaussians, a new explicit scene representation that tackles all these limitations. Specifically, the dynamic urban street is represented as a set of point clouds equipped with semantic logits and 3D Gaussians, each associated with either a foreground vehicle or the background. To model the dynamics of foreground object vehicles, each object point cloud is optimized with optimizable tracked poses, along with a dynamic spherical harmonics model for the dynamic appearance. The explicit representation allows easy composition of object vehicles and background, which in turn allows for scene editing operations and rendering at 133 FPS (1066$\times$1600 resolution) within half an hour of training. The proposed method is evaluated on multiple challenging benchmarks, including KITTI and Waymo Open datasets. Experiments show that the proposed method consistently outperforms state-of-the-art methods across all datasets. Furthermore, the proposed representation delivers performance on par with that achieved using precise ground-truth poses, despite relying only on poses from an off-the-shelf tracker. The code is available at https://zju3dv.github.io/street_gaussians/.
January 2024. https://arxiv.org/abs/2401.01339
1 Deblurring 3D Gaussian Splatting Byeonghyeon Lee,Howoong Lee,Xiangyu Sun,Usman Ali,Eunbyung Park
AbstractRecent studies in Radiance Fields have paved the robust way for novel view synthesis with their photorealistic rendering quality. Nevertheless, they usually employ neural networks and volumetric rendering, which are costly to train and impede their broad use in various real-time applications due to the lengthy rendering time. Lately 3D Gaussians splatting-based approach has been proposed to model the 3D scene, and it achieves remarkable visual quality while rendering the images in real-time. However, it suffers from severe degradation in the rendering quality if the training images are blurry. Blurriness commonly occurs due to the lens defocusing, object motion, and camera shake, and it inevitably intervenes in clean image acquisition. Several previous studies have attempted to render clean and sharp images from blurry input images using neural fields. The majority of those works, however, are designed only for volumetric rendering-based neural radiance fields and are not straightforwardly applicable to rasterization-based 3D Gaussian splatting methods. Thus, we propose a novel real-time deblurring framework, deblurring 3D Gaussian Splatting, using a small Multi-Layer Perceptron (MLP) that manipulates the covariance of each 3D Gaussian to model the scene blurriness. While deblurring 3D Gaussian Splatting can still enjoy real-time rendering, it can reconstruct fine and sharp details from blurry images. A variety of experiments have been conducted on the benchmark, and the results have revealed the effectiveness of our approach for deblurring. Qualitative results are available at https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/
January 2024. https://arxiv.org/abs/2401.00834

About

2024 Gaussian Splatting Paper List(Arxiv)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published