AI实战-practicalAI 中文版
Clone or download
Latest commit 5d85d8d Dec 27, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
data Create README.md Dec 12, 2018
images Create README.md Dec 12, 2018
notebooks Merge pull request #16 from zhyongquan/master Dec 24, 2018
.gitignore Initial commit Dec 11, 2018
LICENSE Initial commit Dec 11, 2018
README.md Update README.md Dec 27, 2018

README.md

AI实战-practicalAI 中文版

Colab MIT

让你有能力使用机器学习从数据中获取有价值的见解。

  • 🔥 使用 PyTorch 实现基本的机器学习算法和深度神经网络。
  • 🖥️ 不需要任何设置,在浏览器中使用 Google Colab 运行所有程序。
  • 📦 不仅仅是教程,而是学习产品级的面向对象机器学习编程。

Notebooks

基础 深度学习 进阶 主题
📓 Notebooks 🔥 PyTorch 📚 高级循环神经网络 Advanced RNNs 📸 计算机视觉 Computer Vision
🐍 Python 🎛️ 多层感知 Multilayer Perceptrons 🏎️ Highway and Residual Networks 时间序列分析 Time Series Analysis
🔢 NumPy 🔎 数据和模型 Data & Models 🔮 自编码器 Autoencoders 🏘️ Topic Modeling
🐼 Pandas 📦 面向对象的机器学习 Object-Oriented ML 🎭 生成对抗网络 Generative Adversarial Networks 🛒 推荐系统 Recommendation Systems
📈 线性回归 Linear Regression 🖼️ 卷积神经网络 Convolutional Neural Networks 🐝 空间变换模型 Spatial Transformer Networks 🗣️ 预训练语言模型 Pretrained Language Modeling
📊 逻辑回归 Logistic Regression 📝 嵌入层 Embeddings 🤷 多任务学习 Multitask Learning
🌳 随机森林 Random Forests 📗 递归神经网络 Recurrent Neural Networks 🎯 Low Shot Learning
💥 k-均值聚类 KMeans Clustering 🍒 强化学习 Reinforcement Learning

查看 notebooks

如果不需要运行 notebooks,使用 Jupyter nbviewer 就可以方便地查看它们。

https://github.com/ 替换为 https://nbviewer.jupyter.org/github/ ,或者打开 https://nbviewer.jupyter.org 并输入 notebook 的 URL。

运行 notebooks

  1. 在本项目的 notebooks 文件夹获取 notebook;
  2. 你可以在 Google Colab(推荐)或本地电脑运行这些 notebook;
  3. 点击一个 notebook,然后替换URL地址中 https://github.com/https://colab.research.google.com/github/ ,或者使用这个 Chrome扩展 一键完成;
  4. 登录你自己的 Google 账户;
  5. 点击工具栏上的 复制到云端硬盘,会在一个新的标签页打开 notebook;

  1. 通过去掉标题中的副本完成 notebook 重命名;
  2. 运行代码、修改等,所有这些都会自动保存到你的个人 Google Drive。

贡献 notebooks

  1. 修改后下载 Google Colab notebook 为 .ipynb 文件;

  1. 转到 https://github.com/GokuMohandas/practicalAI/tree/master/notebooks
  2. 点击 Upload files.

  1. 上传这个 .ipynb 文件;
  2. 写一个详细详细的提交标题和说明;
  3. 适当命名你的分支;
  4. 点击 Propose changes

贡献列表

欢迎任何人参与和完善。

Notebook 译者
00_Notebooks.ipynb @amusi
01_Python.ipynb @amusi
02_NumPy.ipynb @amusi
03_Pandas.ipynb @amusi
04_Linear_Regression.ipynb @jasonhhao
05_Logistic_Regression.ipynb @jasonhhao
06_Random_Forests.ipynb @jasonhhao
07_PyTorch.ipynb @amusi
08_Multilayer_Perceptron.ipynb @zhyongquan
09_Data_and_Models.ipynb @zhyongquan
10_Object_Oriented_ML.ipynb @zhyongquan
11_Convolutional_Neural_Networks.ipynb
12_Embeddings.ipynb @wengJJ
13_Recurrent_Neural_Networks.ipynb
14_Advanced_RNNs.ipynb
15_Computer_Vision.ipynb