Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
tag: v252
Fetching contributors…

Cannot retrieve contributors at this time

433 lines (355 sloc) 13.382 kb
(*
Copyright © 2011 MLstate
This file is part of OPA.
OPA is free software: you can redistribute it and/or modify it under the
terms of the GNU Affero General Public License, version 3, as published by
the Free Software Foundation.
OPA is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for
more details.
You should have received a copy of the GNU Affero General Public License
along with OPA. If not, see <http://www.gnu.org/licenses/>.
*)
exception IteratorEnd
(** Big-Endian Particia tree maps, from "Fast Mergeable Integer Maps", Chris Okasaki, Andrew Gill
@author Louis Gesbert *)
type key = int
type 'a t =
| Empty
| Lf of int * 'a
| Br of int (* prefix *) * int (* branching bit (mask) *) * 'a t * 'a t
let empty = Empty
let is_empty t = Empty = t
let singleton k v = Lf (k,v)
(* Sets all bits lower than the bit at 1 in m to 1, and bit m to 0 *)
let mask i m = if m > 0 then (i lor (m-1)) land (lnot m) else 0
let zerobit i m = (0 = i land m)
(* Try to put all bits to 0 from bit m leftwards until we found the highest bit*)
let highestbit i m =
let rec aux i =
let m = i land (-i) in (* lowest bit of i *)
if i = m then i else aux (i - m)
in aux (i land (lnot (m - 1)))
(* First bit when p1 and p2 differ *)
let branchingbit p1 p2 m = highestbit (p1 lxor p2) m
let join p1 t1 p2 t2 m =
let m = branchingbit p1 p2 m in
if zerobit p1 m
then Br (mask p1 m, m, t1, t2)
else Br (mask p1 m, m, t2, t1)
let rec add k v t = match t with
| Lf (k',_v') ->
if k = k' then Lf (k, v)
else join k (Lf (k, v)) k' t 1
| Br (p,m,t1,t2) when mask k m = p ->
if zerobit k m
then Br (p, m, add k v t1, t2)
else Br (p, m, t1, add k v t2)
| Br (p,m,_t1,_t2) ->
join k (Lf (k, v)) p t (m lsl 1)
| Empty -> Lf (k, v)
let replace k rep t =
let rec aux = function
| Lf (k', v') ->
if k = k' then Lf (k, rep (Some v'))
else join k (Lf (k, rep None)) k' t 1
| Br (p, m, t1, t2) when mask k m = p ->
if zerobit k m
then Br (p, m, aux t1, t2)
else Br (p, m, t1, aux t2)
| Br (p, m, _t1, _t2) ->
join k (Lf (k, rep None)) p t (m lsl 1)
| Empty -> Lf (k, rep None)
in
aux t
let rec add_fi f k v t = match t with
| Lf (k',v') ->
if k = k' then Lf (k, f k v v')
else join k (Lf (k,v)) k' t 1
| Br (p,m,t1,t2) when mask k m = p ->
if zerobit k m
then Br (p, m, add_fi f k v t1, t2)
else Br (p, m, t1, add_fi f k v t2)
| Br (p,m,_t1,_t2) ->
join k (Lf (k, v)) p t (m lsl 1)
| Empty -> Lf (k,v)
let rec safe_add k v t =
add_fi (fun _ _ -> raise (Invalid_argument "Base.Map.safe_add")) k v t
let rec find_opt k t = match t with
| Br (_,m,tl,tr) -> if zerobit k m then find_opt k tl else find_opt k tr
| Lf (k',v) -> if k = k' then Some v else None
| Empty -> None
let rec findi_opt k t = match find_opt k t with
| Some v -> Some (k, v)
| None -> None
let find k t = match find_opt k t with Some v -> v | None -> raise Not_found
let findi k t = match find_opt k t with Some v -> k,v | None -> raise Not_found
let rec remove k t = match t with
| Br (_,_,Lf(k',_v),t') when k' = k -> t'
| Br (_,_,t',Lf(k',_v)) when k' = k -> t'
| Br (p,m,t1,t2) ->
if zerobit k m
then Br(p,m,remove k t1,t2)
else Br(p,m,t1,remove k t2)
| Lf (k',_v) when k = k' -> Empty
| n -> n
let rec update k f t = match t with
| Br (p,m,tl,tr) ->
if zerobit k m
then Br (p,m,update k f tl,tr)
else Br (p,m,tl,update k f tr)
| Lf (k',v) when k=k' -> Lf (k,f v)
| n -> n
(* FIXME: this could be more efficient: once you fail to find the binding, you can add it
* instead of raising Not_found and then adding it *)
let update_default key f default map =
try update key f map with Not_found -> add key default map
let rec mem k t = match t with
| Br (_,m,tl,tr) -> if zerobit k m then mem k tl else mem k tr
| Lf (k',_v) when k=k' -> true
| _ -> false
(* We want some functions to be ordered. The patricia tree is ordered by
lexicographical order of bits, that is 0 < 1 < max_int < min_int < -1.
The only problem may be the first node when m = 0b1000..., ie m = min_int
(<=> m < 0).
So we embed the functions with the following hack, only modifying the
top-level call (so that the cost is negligible) ; it breaks the tree, but
returns a prefix suitable for integer comparison. *)
let ordertop f t = match t with
| Br (_p,m,tl,tr) -> if m < 0 then f (Br (-1, m, tr, tl)) else f t
| t -> f t
(* "repairs" the root of t' according to t, to call after ordertop for map-like functions *)
let ordertop_ret t t' = match t, t' with
| Br (p,m,_,_), Br (_,_,tl,tr) ->
if m < 0 then Br (p, m, tr, tl) else t'
| _, _ -> t'
let ordertop_and_ret f t = ordertop_ret t (ordertop f t)
let rec iter f t = match t with
| Br (_,_,tl,tr) -> iter f tl; iter f tr
| Lf (k,v) -> f k v
| Empty -> ()
let iter f = ordertop (iter f)
let rec rev_iter f t = match t with
| Br (_,_,tl,tr) -> rev_iter f tr; rev_iter f tl
| Lf (k,v) -> f k v
| Empty -> ()
let rev_iter f = ordertop (rev_iter f)
let rec map f t = match t with
| Br (p,m,tl,tr) -> Br (p, m, map f tl, map f tr)
| Lf (k,v) -> Lf (k, f v)
| Empty -> Empty
let map f = ordertop_and_ret (map f)
let rec mapi f t = match t with
| Br (p,m,tl,tr) -> Br (p, m, mapi f tl, mapi f tr)
| Lf (k,v) -> Lf (k, f k v)
| Empty -> Empty
let mapi f = ordertop_and_ret (mapi f)
let rec fold f t acc = match t with
| Br (_,_,tl,tr) -> fold f tr (fold f tl acc)
| Lf (k,v) -> f k v acc
| Empty -> acc
let fold f t acc = ordertop (fun t -> fold f t acc) t
let fold_range_compare _ = assert false
let rec fold_range f t k1 k2 acc = match t with
| Br (p,_,tl,tr) ->
let acc = if k1 <= p then fold_range f tl k1 k2 acc else acc in
if p < k2 then fold_range f tr k1 k2 acc else acc
| Lf (k,v) -> if k1 <= k && k <= k2 then f k v acc else acc
| Empty -> acc
let fold_range f t k1 k2 acc = ordertop (fun t -> fold_range f t k1 k2 acc) t
let fold_length ~start:_ ~length:_ = assert false (* TODO as soon as needed *)
let rec fold_rev f t acc = match t with
| Br (_,_,tl,tr) -> fold_rev f tl (fold_rev f tr acc)
| Lf (k,v) -> f k v acc
| Empty -> acc
let fold_rev f t acc = ordertop (fun t -> fold_rev f t acc) t
let rec fold_map f t acc = match t with
| Br (p,m,tl,tr) ->
let acc, tl = fold_map f tl acc in
let acc, tr = fold_map f tr acc in
acc, Br (p, m, tl, tr)
| Lf (k,v) ->
let acc, v = f k v acc in acc, Lf (k, v)
| Empty -> acc, Empty
let fold_map f t acc =
let acc, t' = ordertop (fun t -> fold_map f t acc) t in
acc, ordertop_ret t t'
let filter_val f t =
fold (fun k v acc -> if f v then add k v acc else acc) t empty
let filter_keys f t =
fold (fun k v acc -> if f k then add k v acc else acc) t empty
let rec compare f t1 t2 = match t1, t2 with
| Br (p1,m1,tl1,tr1), Br (p2,m2,tl2,tr2) ->
let k = Pervasives.compare (p1,m1) (p2,m2) in
if k <> 0 then k else
let k = compare f tl1 tl2 in
if k <> 0 then k
else compare f tr1 tr2
| Lf (k1,v1), Lf (k2, v2) ->
let k = Pervasives.compare k1 k2 in
if k <> 0 then k
else f v1 v2
| Empty, Empty -> 0
| Br _, Lf _ | Br _, Empty | Lf _, Empty -> -1
| Lf _, Br _ | Empty, Br _ | Empty, Lf _ -> 1
let rec equal f t1 t2 = match (t1, t2) with
| Br (p1,m1,tl1,tr1), Br (p2,m2,tl2,tr2) ->
p1 = p2 && m1 = m2 && equal f tl1 tl2 && equal f tr1 tr2
| Lf (k1,v1), Lf (k2, v2) ->
k1 = k2 && f v1 v2
| Empty, Empty -> true
| _, _ -> false
module Iter : (IterSig.S with type +'a element = int * 'a and type +'a structure = 'a t) = struct
type 'a structure = 'a t
type 'a element = int * 'a
type 'a t = ('a structure) list
let rec make_aux acc = function
| Empty -> acc
| Br (_,_,tl,tr) -> make_aux (tr :: acc) tl
| Lf (k,v) -> Lf (k,v) :: acc
let make m = make_aux [] m
let get = function
| Lf (k,v) :: _l -> k, v
| [] -> raise IteratorEnd
| _ -> assert false
let next = function
| Lf (_k, _v) :: Br (_,_,tl,tr) :: l -> make_aux (tr :: l) tl
| Lf (_k, _v) :: l -> l
| [] -> raise IteratorEnd
| _ -> assert false
let at_end i = i = []
(* TODO raise notimplemented, not just failwith *)
let remaining _i = failwith "NotImplemented: IntMap.Iter.remaining"
end
module RevIter : (IterSig.S with type +'a element = int * 'a and type +'a structure = 'a t) = struct
type 'a structure = 'a t
type 'a element = int * 'a
type 'a t = ('a structure) list
let rec make_aux acc = function
| Empty -> acc
| Br (_,_,tl,tr) -> make_aux (tl :: acc) tr
| Lf (k,v) -> Lf (k,v) :: acc
let make m = make_aux [] m
let get = function
| Lf (k,v) :: _l -> k, v
| [] -> raise IteratorEnd
| _ -> assert false
let next = function
| Lf (_k, _v) :: Br (_,_,tl,tr) :: l -> make_aux (tl :: l) tr
| Lf (_k, _v) :: l -> l
| [] -> raise IteratorEnd
| _ -> assert false
let at_end i = i = []
let remaining _i = failwith "NotImplemented: IntMap.Iter.remaining"
end
let rec min t = match t with
| Br (_,_,tl,_tr) -> min tl
| Lf (k,v) -> k,v
| Empty -> raise Not_found
let min t = ordertop min t
let rec max t = match t with
| Br (_,_m,_tl,tr) -> max tr
| Lf (k,v) -> k,v
| Empty -> raise Not_found
let max t = ordertop max t
let rec find_inf k t = match t with
| Br (p,_,tl,tr) ->
if k <= p then find_inf k tl
else (try find_inf k tr with Not_found -> max tl)
| Lf (k',v) -> if k' <= k then k',v else raise Not_found
| Empty -> raise Not_found
let find_inf k t = ordertop (find_inf k) t
let rec find_sup k t = match t with
| Br (p,_,tl,tr) ->
if k <= p
then (try find_sup k tl with Not_found -> min tr)
else find_sup k tr
| Lf (k',v) -> if k' >= k then k',v else raise Not_found
| Empty -> raise Not_found
let find_sup k t = ordertop (find_sup k) t
let nearest k t =
let b = try Some (find_inf k t) with Not_found -> None in
let a = try Some (find_sup k t) with Not_found -> None in
match b,a with
| None, Some x | Some x, None -> x
| None, None -> raise Not_found
| Some (kb,vb), Some (ka,va) ->
if k - kb <= ka - k then kb, vb
else ka, va
let from_list l = List.fold_left (fun t (k,v) -> add k v t) empty l
let fold_assoc k v acc = (k, v) :: acc
let to_list t = fold_rev fold_assoc t []
let ordered_list t = fold_rev fold_assoc t []
let rev_ordered_list t = fold fold_assoc t []
let keys t = fold_rev (fun k _ acc -> k::acc) t []
let elts t = fold_rev (fun _ v acc -> v::acc) t []
(* FIXME: Random according to the distribution of bits, not the actual map *)
let rec random t = match t with
| Br (_p,_m,tl,tr) -> if Random.int 2 = 0 then random tl else random tr
| Lf (k,v) -> k, v
| Empty -> raise Not_found
let size t = fold (fun _ _ i -> i+1) t 0
let rec height t = match t with
| Br (_p,_m,tl,tr) -> Pervasives.max (height tl) (height tr) + 1
| Lf _ -> 1
| Empty -> 0
let rec merge_i f t1 t2 = match t1, t2 with
| Br (p1,m1,tl1,tr1), Br (p2,m2,tl2,tr2) ->
if p1 = p2 && m1 = m2 then (* same node *)
Br (p1, m1, merge_i f tl1 tl2, merge_i f tr1 tr2)
else if m2 lsr 1 > m1 lsr 1 && mask p1 m2 = p2 then (* p1 is a sub-node of p2 *)
if zerobit p1 m2
then Br (p2, m2, merge_i f t1 tl2, tr2)
else Br (p2, m2, tl2, merge_i f t1 tr2)
else if m1 lsr 1 > m2 lsr 1 && mask p2 m1 = p1 then (* p2 is a sub-node of p1 *)
if zerobit p2 m1
then Br (p1,m1,merge_i f tl1 t2 ,tr1)
else Br (p1,m1,tl1,merge_i f tr1 t2)
else (* disjoint nodes *)
join p1 t1 p2 t2 m1
| Lf (k1,v1), Lf (k2,v2) when k1 = k2 -> Lf (k1, f k1 v1 v2)
| Lf (k1,v1), t2 -> add_fi f k1 v1 t2
| t1, Lf (k2,v2) -> add_fi (fun k v2 v1 -> f k v1 v2) k2 v2 t1
| Empty, t | t, Empty -> t
let merge f t1 t2 = merge_i (fun _ -> f) t1 t2
let safe_merge t1 t2 =
merge (fun _ _ -> raise (Invalid_argument "Base.Map.safe_merge")) t1 t2
let rec decons = function
| Empty -> invalid_arg "IntMap.decons"
| Lf (key, val_) -> Empty, key, val_, Empty
| Br (_prefix, _mask, left, right) -> (
match left, right with
| Empty, Empty -> invalid_arg "IntMap.decons"
| left, Lf (key, val_)
| Lf (key, val_), left
-> left, key, val_, Empty
| br_left, br_right ->
let l_left, key, val_, l_right = decons br_left in
l_left, key, val_, (merge (fun _ a -> a) l_right br_right)
)
let rename f t =
fold (fun k v t -> add (f k) v t) t empty
(* cf doc *)
let pp sep ppe fmt t =
let fiter elt val_ =
ppe fmt elt val_ ;
Format.fprintf fmt sep
in
iter fiter t
let compare_key : int -> int -> int = Pervasives.compare
let diff map1 map2 =
fold (fun k v acc ->
if mem k map2 then
acc
else
add k v acc
) map1 empty
let diff2 map1 map2 map3 =
fold (fun k v acc ->
if mem k map2 && not (mem k map3) then
acc
else
add k v acc
) map1 empty
let from_sorted_array _ = assert false
Jump to Line
Something went wrong with that request. Please try again.