Skip to content
/ DAPCA Public

This repository contains code of DAPCA function, description of DAPCA algorithm and some data to test

License

Notifications You must be signed in to change notification settings

Mirkes/DAPCA

Repository files navigation

DAPCA

Domain adaptation PCA method first introduced in Gorban et al, High-Dimensional Separability for One- and Few-Shot Learning. Entropy 2021, 23(8), 1090 and described and benchmarked in details in this preprint.

Domain Adaptation Principal Component Analysis is a new base linear method for domain adaptation (learning on out-of-distribution data).

The main and classical assumption of standard machine learning approaches is existence of the probability distribution and that this distribution is the same or very similar for the training and test sets. However, this assumption can be easily violated in real-life, when the training set differs from the data that the system should work with under operational conditions. The worst is that the new data have no known labels. Such situations are typical and lead to the problem of domain adaptation which became recently popular.

We suggest a method of Domain Adaptation Principal Component Analysis (DAPCA), which generalizes the Supervised Principal Component Analsysis method on the case with labeled source and unlabeled target domains. DAPCA finds a linear data representation which takes into account the variance of the source and the target domains, labels in the source domain and minimizes the differences in the distribution of representation features between the source and the tagret.

DAPCA can be used as a useful data pre-processing step for further classification tasks when the dimensionality reduction is required, instead of the classical PCA.

Installation

Copy DAPCA.py or DAPCA.m, specify the path to the module.

Dependencies (Python)

  • numpy
  • sklearn
  • pynndescent
  • matplotlib
  • numbers
  • warnings
  • abc

Benchmarking with linear Domain Adaptation methods, using toy example

Comparison of DAPCA with Subspace Alignment, Correlation alignment and Transfer Component Analysis using a simple toy example can be found in this notebook.

Example of use (Python)

Importing libraries

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from DAPCA import DAPCA

Loading the example data

X = np.loadtxt('datasets/synthetic/2clusters/2clusters_3d/X.csv',delimiter=',')
Y = np.loadtxt('datasets/synthetic/2clusters/2clusters_3d/Y.csv',delimiter=',')
labels = np.loadtxt('datasets/synthetic/2clusters/2clusters_3d/labels.csv',delimiter=',')
cls = ['g','y','grey']
labels_c = [cls[int(i)-1] for i in labels]
labelsXY_c = labels_c + ['grey']*np.sum(Y.shape[0])
n_points1 = np.sum(labels==1.0)
n_points2 = np.sum(labels==2.0)

Running PCA, SPCA and DAPCA

pca = PCA(svd_solver='full')
u = pca.fit_transform(X)
mn = np.mean(X,axis=0)
#PY = (Y-mn)@pca.components_
PY = pca.fit_transform(Y)

nbins = 30

plt.subplots(1,2,figsize=(10,5))

# Do PCA
plt.subplot(121)
plt.scatter(u[:,0],u[:,1],c=labels_c,alpha=0.5,s=10)
plt.scatter(PY[:,0],PY[:,1],c='grey',alpha=0.5,s=10)
plt.xlabel('PC1',fontsize=20)
plt.ylabel('PC2',fontsize=20)
plt.axis('equal')
plt.subplot(122)
rng = (np.min((np.min(u[:,0]),np.min(PY[:,0]))),np.max((np.max(u[:,0]),np.max(PY[:,0]))))
plt.hist(u[0:n_points1,0],bins=nbins,color='g',alpha=0.5,range=rng)
plt.hist(u[n_points1:n_points1+n_points2,0],bins=nbins,color='y',alpha=0.5,range=rng)
#plt.hist(u[n_points[0]+n_points[1]:,0],bins=nbins,color='grey',alpha=0.5,density=True)
plt.hist(PY[:,0],bins=nbins,color='grey',alpha=0.5,range=rng)
plt.title('PC1',fontsize=20)
plt.show()

# ======================= PARAMETERS OF DAPCA ===========================
alpha = 1
num_comps = 2
gamma = 200
maxIter = 10
beta = 1
kNN = 1
# =======================================================================

# Compute Supervised PCA (SPCA)
[V1, D1, PX, PY, kNNs] = DAPCA(X, labels, 2, alpha=alpha)
PX_SPCA = PX.copy()
V1_SPCA = V1.copy()

plt.subplots(1,2,figsize=(10,5))

mn = np.mean(X,axis=0)
PY = (Y-mn)@V1

if num_comps>1:
    plt.subplot(121)
    plt.scatter(PX[:,0],PX[:,1],c=labels_c,alpha=0.5,s=10)
    plt.scatter(PY[:,0],PY[:,1],c='grey',alpha=0.5,s=10)
    plt.xlabel('SPC1',fontsize=20)
    plt.ylabel('SPC2',fontsize=20)
    #plt.axis('equal')

plt.subplot(122)
rng = (np.min((np.min(PX[:,0]),np.min(PY[:,0]))),np.max((np.max(PX[:,0]),np.max(PY[:,0]))))
plt.hist(PX[:n_points1,0],bins=nbins,color='g',alpha=0.5,range=rng)
plt.hist(PX[n_points1:n_points1+n_points2,0],bins=nbins,color='y',alpha=0.5,range=rng)
plt.hist(PY[:,0],bins=nbins,color='grey',alpha=0.5,range=rng)
plt.title('SPC1',fontsize=20)
plt.show()

# We will use initial neighbourhood relations as in 2D PCA
initialV = pca.components_[:num_comps,:].T
if num_comps==1:
    initialV = initialV.reshape(-1,1)

plt.subplots(1,2,figsize=(10,5))

# Compute DAPCA
[V1, D1, PX, PY, kNNs] = DAPCA(X, labels, num_comps,  YY=Y, 
                         alpha=alpha, gamma=gamma,maxIter=maxIter,
                               beta=beta,verbose='all',kNN=kNN,
                               initialV = initialV,eps=1e-10)                                   


if PX.shape[1]>1:
    plt.subplot(121)
    plt.scatter(PX[:,0],PX[:,1],c=labels_c,alpha=0.5,s=10)
    plt.scatter(PY[:,0],PY[:,1],c='grey',alpha=0.5,s=10)
    plt.xlabel('DAPC1',fontsize=20)
    plt.ylabel('DAPC2',fontsize=20)
    #plt.axis('equal')

plt.subplot(122)
rng = (np.min((np.min(PX[:,0]),np.min(PY[:,0]))),np.max((np.max(PX[:,0]),np.max(PY[:,0]))))
plt.hist(PX[:n_points1,0],bins=nbins,color='g',alpha=0.5,range=rng)
plt.hist(PX[n_points1:n_points1+n_points2,0],bins=nbins,color='y',alpha=0.5,range=rng)
plt.hist(PY[:,0],bins=nbins,color='grey',alpha=0.5,range=rng)
plt.title('DAPC1',fontsize=20)
plt.show()

Expected output

About

This repository contains code of DAPCA function, description of DAPCA algorithm and some data to test

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published