Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding I/O for direct analysis of near-surface wind gust for RRFS-based 3DRTMA #726

Closed
GangZhao-NOAA opened this issue Mar 22, 2024 · 0 comments · Fixed by #730
Closed
Assignees

Comments

@GangZhao-NOAA
Copy link
Contributor

To improve the analysis of the near-surface wind gust in 3DRTMA, the observations of near-surface wind gust would be analyzed directly in GSI (3DVar and Hybrid 3DEnVar), instead of being a derived product from the near-surface wind analysis.

Since the core subroutines for direct variational assimilation of wind gust (e.g., setupgust.f90, intgust.f90, stpgust.f90, etc.) had already been implemented in GSI for 2DRTMA, so in the work the development in GSI mainly focus on adding I/O of 2-D wind gust firstguess and analysis fields for RRFS-based 3DRTMA, and some minor modifications in observation and background error for wind gust, options to control the analysis of wind gust, etc.

ShunLiu-NOAA pushed a commit that referenced this issue Apr 5, 2024
…ed 3DRTMA (#730)

<!-- PLEASE READ -->
<!--
Before opening a PR, please note these guidelines:

- Each PR should only address ONE topic and have an associated issue
- No hardcoded or paths to personal directories should be present
- No temporary or backup files should be committed
- Any code that was disabled by being commented out should be removed
-->

**Description**

<!-- Please include relevant motivation and context. -->
<!-- Please include a summary of the change and which issue is fixed.
-->
<!-- List any dependencies that are required for this change. -->
To improve the analysis of the near-surface wind gust in 3DRTMA, the
observations of near-surface wind gust would be analyzed directly in GSI
(3DVar and Hybrid 3DEnVar), instead of being a derived product from the
near-surface wind analysis.

Since the core subroutines for direct variational assimilation of wind
gust (e.g., setupgust.f90, intgust.f90, stpgust.f90, etc.) had already
been implemented in GSI for 2DRTMA, so in the work the development in
GSI mainly focus on adding I/O of 2-D wind gust firstguess and analysis
fields for RRFS-based 3DRTMA, and some minor modifications in
observation and background error for wind gust, options to control the
analysis of wind gust, etc.
<!-- Please provide reference to the issue this pull request is
addressing. -->
<!-- For e.g. Fixes #IssueNumber -->
This PR is to address the issue #726 : Adding I/O for direct analysis of
near-surface wind gust for RRFS-based 3DRTMA
Fixes #726
**Type of change**

Please delete options that are not relevant.

- [x] New feature (non-breaking change which adds functionality)

**How Has This Been Tested?**

<!-- Please describe the tests that you ran to verify your changes and
on the platforms these tests were conducted. -->
<!-- Provide instructions so we can reproduce. -->
<!-- Please also list any relevant details for your test configuration
-->
  
**Checklist**

- [x] My code follows the style guidelines of this project
- [x] I have performed a self-review of my own code
- [x] I have commented my code, particularly in hard-to-understand areas
- [x] New and existing tests pass with my changes
      tested with a real case - 2024-02-20_12:00Z, 
1. dry-run (using my updated GSI code with wind gust analysis, but
actually no wind gust obs is analyzed, so-called dryrun) is compared to
control-run (original GSI code running without wind gust obs): the
results are identical. This indicates that if without analyzing
wind-gust obs, then the updated code generates the analysis identical to
the analysis of original/control code. Or say, the added code does not
have influence on the other part of code.
2. real case run with updated GSI code to analyze the obs of wind gust:
The following figure shows the used observations of near-surface wind
gust:

![var_obs_2024022012_gust_used_maprll_datll_reg_ncf](https://github.com/NOAA-EMC/GSI/assets/53267411/ecbe479a-03c6-490f-a179-9e0027291468)
the following figure shows the analysis increments:

![GUST_hyb_hwllp90_corptuned_inc_incrintrp_maprll_datrll_reg_grb2](https://github.com/NOAA-EMC/GSI/assets/53267411/a01fca0d-dc1f-438b-b8eb-e624de35a631)
- [x] Any dependent changes have been merged and published
- [x] Regression tests on WCOSS2 (Cactus) and Hera (Rocky-8) : my
updated GSI commit
[#f91f247d](GangZhao-NOAA@f91f247))
vs control/original GSI code (commit
[#6d9ebbb7](6d9ebbb))
Here is the reports of the regression tests on WCOSS2 (Cactus):
~~~
[gang.zhao@clogin02:build] (feature/windgust_in_3dvar_for_3drtma)$ ctest
-j 7
Test project
/lfs/h2/emc/da/save/gang.zhao/WorkDir/ProdGSI_Dev/gsi_dev/build
    Start 1: global_4denvar
    Start 2: rtma
    Start 3: rrfs_3denvar_glbens
    Start 4: netcdf_fv3_regional
    Start 5: hafs_4denvar_glbens
    Start 6: hafs_3denvar_hybens
    Start 7: global_enkf
1/7 Test #4: netcdf_fv3_regional ..............   Passed  483.15 sec
2/7 Test #3: rrfs_3denvar_glbens ..............   Passed  486.74 sec
3/7 Test #7: global_enkf ......................   Passed  850.98 sec
4/7 Test #2: rtma .............................   Passed  970.28 sec
5/7 Test #6: hafs_3denvar_hybens ..............   Passed  1152.82 sec
6/7 Test #5: hafs_4denvar_glbens ..............   Passed  1213.93 sec
7/7 Test #1: global_4denvar ...................   Passed  1683.16 sec

100% tests passed, 0 tests failed out of 7

Total Test time (real) = 1683.19 sec
~~~
Here is the reports of the regression tests on Hera (Rocky8):
~~~
(base) [Gang.Zhao@hfe11:build] (feature/windgust_in_3dvar_for_3drtma)$
ctest -j 7
Test project /scratch1/NCEPDEV/da/Gang.Zhao/ProdGSI_dev/gsi_dev/build
    Start 1: global_4denvar
    Start 2: rtma
    Start 3: rrfs_3denvar_glbens
    Start 4: netcdf_fv3_regional
    Start 5: hafs_4denvar_glbens
    Start 6: hafs_3denvar_hybens
    Start 7: global_enkf
1/7 Test #4: netcdf_fv3_regional ..............   Passed  491.53 sec
2/7 Test #3: rrfs_3denvar_glbens ..............***Failed  495.27 sec
3/7 Test #2: rtma .............................   Passed  982.45 sec
4/7 Test #6: hafs_3denvar_hybens ..............   Passed  1168.99 sec
5/7 Test #7: global_enkf ......................   Passed  1239.77 sec
6/7 Test #5: hafs_4denvar_glbens ..............***Failed  1347.87 sec
7/7 Test #1: global_4denvar ...................   Passed  1974.45 sec

71% tests passed, 2 tests failed out of 7

Total Test time (real) = 1974.91 sec

The following tests FAILED:
          3 - rrfs_3denvar_glbens (Failed)
          5 - hafs_4denvar_glbens (Failed)
Errors while running CTest
Output from these tests are in:
/scratch1/NCEPDEV/da/Gang.Zhao/ProdGSI_dev/gsi_dev/build/Testing/Temporary/LastTest.log
Use "--rerun-failed --output-on-failure" to re-run the failed cases
verbosely.
(base) [Gang.Zhao@hfe11:build] (feature/windgust_in_3dvar_for_3drtma)$
ctest -R rrfs_3denvar_glbens
Test project /scratch1/NCEPDEV/da/Gang.Zhao/ProdGSI_dev/gsi_dev/build
    Start 3: rrfs_3denvar_glbens
1/1 Test #3: rrfs_3denvar_glbens ..............   Passed  430.52 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 430.55 sec
(base) [Gang.Zhao@hfe11:build] (feature/windgust_in_3dvar_for_3drtma)$
ctest -R hafs_4denvar_glbens
Test project /scratch1/NCEPDEV/da/Gang.Zhao/ProdGSI_dev/gsi_dev/build
    Start 5: hafs_4denvar_glbens
1/1 Test #5: hafs_4denvar_glbens ..............   Passed  1225.37 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 1225.39 sec
~~~
**Note**: 
_When I was running the regression tests, GSI code was just updated to
the latest commit
[#b53740a7](GangZhao-NOAA@f91f247).
Considering the frequent update in EMC GSI code recently and saving the
time, after this PR has been reviewed and approved by peer-reviewers, I
will update the code to latest EMC GSI commit, then re-run the
regression tests for final approval.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants