Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Correct physics based VRF model to align inlet and outlet air flow rates #7295

Merged
merged 12 commits into from
May 17, 2019
Merged
Original file line number Diff line number Diff line change
Expand Up @@ -895,7 +895,7 @@ \subsubsection{Overview}\label{VRF-FluidTCtrl-HP-overview}

Note that a number of calculation steps are coupled together in the VRF-FluidTCtrl model, for instance, the piping loss calculation and the system performance calculation. More specifically, the piping loss changes the operating conditions of the system, which may lead to a different control strategy and thus in reverse affect the amount of piping loss. This makes it difficult to obtain an analytical solution for a number of operational parameters (e.g., enthalpy of refrigerant entering the indoor unit), and therefore numerical iterations are employed to address this problem (refer to Figure VRF-FluidTCtrl-3 for more details). Therefore, the VRF-FluidTCtrl model can have a longer execution time to perform the simulation than the VRF-SysCurve model.

The object connections for VRF-FluidTCtrl model is similar to those for VRF-SysCurve model. The difference lies in the object used to describe a specific components. For example, VRF-SysCurve model uses \emph{AirConditioner:VariableRefrigerantFlow} object to describe the VRF outdoor unit performance, while in VRF-FluidTCtrl model the \emph{AirConditioner:VariableRefrigerantFlow} object is used.
The object connections for VRF-FluidTCtrl model is similar to those for VRF-SysCurve model. The difference lies in the object used to describe a specific components. For example, VRF-SysCurve model uses \emph{AirConditioner:VariableRefrigerantFlow} object to describe the VRF outdoor unit performance, while in VRF-FluidTCtrl model the \emph{AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl} object is used.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good find.


\begin{figure}[hbtp] % figure VRF-FluidTCtrl-1b
\centering
Expand Down