Skip to content
Go to file

Latest commit

The main issue was that we were updating the non-error buffer, even
though an error condition was present in this case, so error buffer
should have been updated instead.

While we're at it, cleanup the output for this case, pointing out that
no device was found and that we're only tentatively guessing what the
associated platform might be.

Git stats


Failed to load latest commit information.
Latest commit message
Commit time

What is this?

clinfo is a simple command-line application that enumerates all possible (known) properties of the OpenCL platform and devices available on the system.

Inspired by AMD's program of the same name, it is coded in pure C and it tries to output all possible information, including those provided by platform-specific extensions, trying not to crash on unsupported properties (e.g. 1.2 properties on 1.1 platforms).


clinfo [options...]

Common used options are -l to show a synthetic summary of the available devices (without properties), and -a, to try and show properties even if clinfo would otherwise think they aren't supported by the platform or device.

Refer to the man page for further information.

Use cases

  • verify that your OpenCL environment is set up correctly; if clinfo cannot find any platform or devices (or fails to load the OpenCL dispatcher library), chances are high no other OpenCL application will run;
  • verify that your OpenCL development environment is set up correctly: if clinfo fails to build, chances are high no other OpenCL application will build;
  • explore/report the actual properties of the available device(s).

Segmentation faults

Some faulty OpenCL platforms may cause clinfo to crash. There isn't much clinfo itself can do about it, but you can try and isolate the platform responsible for this. On POSIX systems, you can generally find the platform responsible for the fault with the following one-liner:

find /etc/OpenCL/vendors/ -name '*.icd' | while read OPENCL_VENDOR_PATH ; do clinfo -l > /dev/null ; echo "$? ${OPENCL_VENDOR_PATH}" ; done

Missing information

If you know of device properties that are exposed in OpenCL (either as core properties or as extensions), but are not shown by clinfo, please open an issue providing as much information as you can. Patches and pull requests accepted too.


Build status on Travis

Building requires an OpenCL SDK (or at least OpenCL headers and development files), and the standard build environment for the platform. No special build system is used (autotools, CMake, meson, ninja, etc), as I feel adding more dependencies for such a simple program would be excessive. Simply running make at the project root should work.

Android support

Local build via Termux

One way to build the application on Android, pioneered by truboxl and described here, requires the installation of Termux, that can be installed via Google Play as well as via F-Droid.

Inside Termux, you will first need to install some common tools:

pkg install git make clang -y

You will also need to clone the clinfo repository, and fetch the OpenCL headers (we'll use the official KhronosGroup/OpenCL-Headers repository for that):

git clone
git clone

(I prefer doing this from a src directory I have created for development, but as long as clinfo and OpenCL-Headers are sibling directories, the headers will be found. If not, you will have to override CPPFLAGS with e.g. export CPPFLAGS=/path/to/where/headers/are before running make.)

You can then cd clinfo and build the application with

make OS=Android

(The OS value must be specified because currently Android is not autodetected.)

If linking fails due to a missing, then your Android machine probably doesn't support OpenCL. Otherwise, you should have a working clinfo you can run. You will most probably need to set LD_LIBRARY_PATH to let the program know where the OpenCL library is at runtime: you will need at least ${ANDROID_ROOT}/vendor/lib64, but on some machine the OpenCL library actually maps to a different library (e.g., on one of my systems, it maps to the GLES library, which is in a different subdirectory). Something like:

LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${ANDROID_ROOT}/vendor/lib64:${ANDROID_ROOT}/vendor/lib64/egl" ./clinfo

might work.

Windows support

The application can usually be built in Windows too (support for which required way more time than I should have spent, really, but I digress), by running make in a Developer Command Prompt for Visual Studio, provided an OpenCL SDK (such as the Intel or AMD one) is installed.

Precompiled Windows executable are available as artefacts of the AppVeyor CI.

Build statusWindows binaries
Build status on AppVeyor 32-bit 64-bit


Print all known information about all available OpenCL platforms and devices in the system





No packages published
You can’t perform that action at this time.