Skip to content

Commit

Permalink
use standard rules for ND (fixes issue #144)
Browse files Browse the repository at this point in the history
  • Loading branch information
rzach committed Jul 17, 2017
1 parent 62fdedf commit 0eca72d
Show file tree
Hide file tree
Showing 8 changed files with 208 additions and 167 deletions.
2 changes: 1 addition & 1 deletion content/first-order-logic/natural-deduction/identity.tex
Expand Up @@ -41,8 +41,8 @@
\begin{ex}
If $s$ and $t$ are closed terms, then $!A(s), \eq[s][t] \Proves !A(t)$:
\[
\AxiomC{$!A(s)$}
\AxiomC{$\eq[s][t]$}
\AxiomC{$!A(s)$}
\RightLabel{$\Elim{\eq}$}
\BinaryInfC{$!A(t)$}
\DisplayProof
Expand Down
64 changes: 34 additions & 30 deletions content/first-order-logic/natural-deduction/provability.tex
Expand Up @@ -51,7 +51,7 @@

\begin{prop}
\ollabel{prop:provability-contr} If $\Gamma \Proves
!A$ and $\Gamma \cup \{!A\} \Proves \lfalse$, then
!A$ and $\Gamma \cup \{!A\}$ is inconsistent, then
$\Gamma$ is inconsistent.
\end{prop}

Expand All @@ -60,14 +60,14 @@
$\delta_1$ and the !!{derivation} of $\lfalse$ from $\Gamma \cup \{!A\}$
be $\delta_2$. We can then !!{derive}:
\[
\AxiomC{}
\RightLabel{$\delta_1$}
\DeduceC{$!A$}
\AxiomC{$\Discharge{!A}{1}$}
\RightLabel{$\delta_2$}
\DeduceC{$\lfalse$}
\DischargeRule{\Intro{\lnot}}{1}
\UnaryInfC{$\lnot !A$}
\AxiomC{}
\RightLabel{$\delta_1$}
\DeduceC{$!A$}
\RightLabel{\Elim{\lnot}}
\BinaryInfC{$\lfalse$}
\DisplayProof
Expand All @@ -77,14 +77,14 @@
\end{proof}

\begin{prop}
\ollabel{prop:provability-lnot} If $\Gamma \cup \{!A\} \Proves
\lfalse$, then $\Gamma \Proves \lnot !A$.
\ollabel{prop:provability-lnot} If $\Gamma \cup \{!A\}$ is
inconsistent, then $\Gamma \Proves \lnot !A$.
\end{prop}

\begin{proof}
Suppose that $\Gamma \cup \{!A\} \Proves \lfalse$. Then there is a
derivation of $\lfalse$ from $\Gamma \cup \{!A\}$. Let $\delta$ be
the !!{derivation} of $\lfalse$, and consider
Suppose that $\Gamma \cup \{!A\}$ is inconsistent. Then there is
!!a{derivation} of $\lfalse$ from $\Gamma \cup \{!A\}$. Let $\delta$
be the !!{derivation} of $\lfalse$, and consider
\[
\AxiomC{$\Discharge{!A}{1}$}
\RightLabel{$\delta$}
Expand All @@ -101,43 +101,44 @@
\end{prop}

\begin{proof}
This is a simple application of the $\Intro{\lfalse}$ rule.
This is a simple application of the $\Elim{\lnot}$ rule.
\end{proof}


\begin{prop}
\ollabel{prop:provability-exhaustive} If $\Gamma \cup \{!A\} \Proves
\lfalse$ and $\Gamma \cup \{\lnot !A\} \Proves \lfalse$, then $\Gamma
\Proves \lfalse$.
\ollabel{prop:provability-exhaustive} If $\Gamma \cup \{!A\}$ is
inconsistent and $\Gamma \cup \{\lnot !A\}$ is inconsistent, then
$\Gamma$ is inconsistent.
\end{prop}

\begin{proof}
There are !!{derivation}s $\delta_1$ and $\delta_2$ of $\lfalse$ from
$\Gamma \cup,\{ !A \}$ and $\lfalse$ from $\Gamma \cup \{ \lnot !A
$\Gamma \cup \{ !A \}$ and $\lfalse$ from $\Gamma \cup \{ \lnot !A
\}$, respectively. We can then !!{derive}
\[
\AxiomC{$\Discharge{!A}{1}$}
\RightLabel{$\delta_1$}
\DeduceC{$\lfalse$}
\DischargeRule{\Intro{\lnot}}{1}
\UnaryInfC{$\lnot !A$}
\AxiomC{$\Discharge{\lnot !A}{2}$}
\RightLabel{$\delta_2$}
\DeduceC{$\lfalse$}
\DischargeRule{\Intro{\lnot}}{2}
\UnaryInfC{$\lnot \lnot !A$}
\AxiomC{$\Discharge{!A}{1}$}
\RightLabel{$\delta_1$}
\DeduceC{$\lfalse$}
\DischargeRule{\Intro{\lnot}}{1}
\UnaryInfC{$\lnot !A$}
\RightLabel{\Elim{\lnot}}
\BinaryInfC{$\lfalse$}
\DisplayProof
\]
Since the assumptions $!A$ and $\lnot !A$ are !!{discharged}, this is
!!a{derivation} from~$\Gamma$ alone. Hence $\Gamma \Proves \lfalse$.
!!a{derivation} of~$\lfalse$ from~$\Gamma$ alone. Hence $\Gamma$ is
inconsistent.
\end{proof}

\begin{prop}
\ollabel{prop:provability-lor-left} If $\Gamma \cup \{!A\} \Proves
\lfalse$ and $\Gamma \cup \{!B\} \Proves \lfalse$, then $\Gamma \cup
\{!A \lor !B\} \Proves \lfalse$.
\ollabel{prop:provability-lor-left} If $\Gamma \cup \{!A\}$ and and
$\Gamma \cup \{!B\}$ are both inconsistent, then $\Gamma \cup \{!A
\lor !B\}$ is inconsistent.
\end{prop}

\begin{proof}
Expand Down Expand Up @@ -237,11 +238,11 @@
$\Gamma$. Consider:
\[
\AxiomC{}
\RightLabel{$\delta_1$}
\DeduceC{$!A$}
\AxiomC{}
\RightLabel{$\delta_2$}
\DeduceC{$!A \lif !B$}
\AxiomC{}
\RightLabel{$\delta_1$}
\DeduceC{$!A$}
\RightLabel{\Elim{\lif}}
\BinaryInfC{$!B$}
\DisplayProof
Expand All @@ -263,13 +264,13 @@
Then there is a !!{derivation}~$\delta$ of $\lnot !A$ from~$\Gamma$. The
following !!{derivation} shows that $\Gamma \Proves !A \lif !B$:
\[
\AxiomC{$\Discharge{!A}{1}$}
\AxiomC{}
\RightLabel{$\delta$}
\DeduceC{$\lnot !A$}
\RightLabel{\Intro{\lfalse}}
\AxiomC{$\Discharge{!A}{1}$}
\RightLabel{\Elim{\lnot}}
\BinaryInfC{$\lfalse$}
\RightLabel{\Elim{\lfalse}}
\RightLabel{\FalseInt}
\UnaryInfC{$!B$}
\DischargeRule{\Intro{\lif}}{1}
\UnaryInfC{$!A \lif !B$}
Expand All @@ -291,7 +292,10 @@
\DischargeRule{\Intro{\lif}}{1}
\UnaryInfC{$!A \lif !B$}
\DisplayProof
\] }
\]
(In fact we can simply add $\Intro{\lif}$ to~$\delta$, since
$\Intro{\lif}$ may, but does not have to, !!{discharge} the
assumption~$!A$.)}
\end{proof}

\begin{probtag}{probIf}
Expand Down

0 comments on commit 0eca72d

Please sign in to comment.