Skip to content

Commit

Permalink
doc: Document Span pitfalls
Browse files Browse the repository at this point in the history
  • Loading branch information
sipa authored and furszy committed Jul 6, 2021
1 parent e2216d7 commit 138053d
Showing 1 changed file with 56 additions and 0 deletions.
56 changes: 56 additions & 0 deletions src/span.h
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,62 @@
/** A Span is an object that can refer to a contiguous sequence of objects.
*
* It implements a subset of C++20's std::span.
*
* Things to be aware of when writing code that deals with Spans:
*
* - Similar to references themselves, Spans are subject to reference lifetime
* issues. The user is responsible for making sure the objects pointed to by
* a Span live as long as the Span is used. For example:
*
* std::vector<int> vec{1,2,3,4};
* Span<int> sp(vec);
* vec.push_back(5);
* printf("%i\n", sp.front()); // UB!
*
* may exhibit undefined behavior, as increasing the size of a vector may
* invalidate references.
*
* - One particular pitfall is that Spans can be constructed from temporaries,
* but this is unsafe when the Span is stored in a variable, outliving the
* temporary. For example, this will compile, but exhibits undefined behavior:
*
* Span<const int> sp(std::vector<int>{1, 2, 3});
* printf("%i\n", sp.front()); // UB!
*
* The lifetime of the vector ends when the statement it is created in ends.
* Thus the Span is left with a dangling reference, and using it is undefined.
*
* - Due to Span's automatic creation from range-like objects (arrays, and data
* types that expose a data() and size() member function), functions that
* accept a Span as input parameter can be called with any compatible
* range-like object. For example, this works:
*
* void Foo(Span<const int> arg);
*
* Foo(std::vector<int>{1, 2, 3}); // Works
*
* This is very useful in cases where a function truly does not care about the
* container, and only about having exactly a range of elements. However it
* may also be surprising to see automatic conversions in this case.
*
* When a function accepts a Span with a mutable element type, it will not
* accept temporaries; only variables or other references. For example:
*
* void FooMut(Span<int> arg);
*
* FooMut(std::vector<int>{1, 2, 3}); // Does not compile
* std::vector<int> baz{1, 2, 3};
* FooMut(baz); // Works
*
* This is similar to how functions that take (non-const) lvalue references
* as input cannot accept temporaries. This does not work either:
*
* void FooVec(std::vector<int>& arg);
* FooVec(std::vector<int>{1, 2, 3}); // Does not compile
*
* The idea is that if a function accepts a mutable reference, a meaningful
* result will be present in that variable after the call. Passing a temporary
* is useless in that context.
*/
template<typename C>
class Span
Expand Down

0 comments on commit 138053d

Please sign in to comment.