Skip to content

Commit

Permalink
Add English Documents for UTC (#4476)
Browse files Browse the repository at this point in the history
* [UTC] Add English documents

* [UTC] Add English documents

* [utc] update readmes

* [utc] add xclue link
  • Loading branch information
LemonNoel committed Jan 17, 2023
1 parent c1359cb commit c21ebfc
Show file tree
Hide file tree
Showing 4 changed files with 400 additions and 4 deletions.
8 changes: 6 additions & 2 deletions applications/zero_shot_text_classification/README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
简体中文 | [English](README_en.md)

# 零样本文本分类

**目录**
Expand Down Expand Up @@ -27,7 +29,7 @@
**零样本文本分类应用亮点:**

- **覆盖场景全面🎓:** 覆盖文本分类各类主流任务,支持多任务训练,满足开发者多样文本分类落地需求。
- **效果领先🏃:** 具有突出分类效果的UTC模型作为训练基座,提供良好的零样本和小样本学习能力。
- **效果领先🏃:** 具有突出分类效果的UTC模型作为训练基座,提供良好的零样本和小样本学习能力。该模型在[ZeroCLUE](https://www.cluebenchmarks.com/zeroclue.html)[FewCLUE](https://www.cluebenchmarks.com/fewclue.html)均取得榜首(截止2023年1月11日)。
- **简单易用:** 通过Taskflow实现三行代码可实现无标注数据的情况下进行快速调用,一行命令即可开启文本分类,轻松完成部署上线,降低多任务文本分类落地门槛。
- **高效调优✊:** 开发者无需机器学习背景知识,即可轻松上手数据标注及模型训练流程。

Expand Down Expand Up @@ -156,7 +158,9 @@ python -u -m paddle.distributed.launch --gpus "0,1" run_train.py \
* `seed`:全局随机种子,默认为 42。
* `model_name_or_path`:进行 few shot 训练使用的预训练模型。默认为 "utc-large"。
* `output_dir`:必须,模型训练或压缩后保存的模型目录;默认为 `None`
* `dev_path`:开发集路径;默认为 `None`
* `dataset_path`:数据集文件所在目录;默认为 `./data/`
* `train_file`:训练集后缀;默认为 `train.txt`
* `dev_file`:开发集后缀;默认为 `dev.txt`
* `max_seq_len`:文本最大切分长度,包括标签的输入超过最大长度时会对输入文本进行自动切分,标签部分不可切分,默认为512。
* `per_device_train_batch_size`:用于训练的每个 GPU 核心/CPU 的batch大小,默认为8。
* `per_device_eval_batch_size`:用于评估的每个 GPU 核心/CPU 的batch大小,默认为8。
Expand Down
253 changes: 253 additions & 0 deletions applications/zero_shot_text_classification/README_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
[简体中文](README.md) | English

# Zero-shot Text Classification

**Table of contents**
- [1. Zero-shot Text Classification Application](#1)
- [2. Quick Start](#2)
- [2.1 Code Structure](#21)
- [2.2 Data Annotation](#22)
- [2.3 Finetuning](#23)
- [2.4 Evaluation](#24)
- [2.5 Inference](#25)
- [2.6 Deployment](#26)
- [2.7 Experiments](#27)

<a name="1"></a>

## 1. Zero-shot Text Classification

This project provides an end-to-end application solution for universal text classification based on Universal Task Classification (UTC) finetuning and goes through the full lifecycle of **data labeling, model training and model deployment**. We hope this guide can help you apply Text Classification techniques with zero-shot ability in your own products or models.

<div align="center">
<img width="700" alt="UTC模型结构图" src="https://user-images.githubusercontent.com/25607475/212268807-66181bcb-d3f9-4086-9d4a-de4d1d0933c2.png">
</div>

Text Classification refers to assigning a set of categories to given input text. Despite the advantages of tuning, applying text classification techniques in practice remains a challenge due to domain adaption and lack of labeled data, etc. This PaddleNLP Zero-shot Text Classification Guide builds on our UTC from the Unified Semantic Matching (USM) model series and provides an industrial-level solution that supports universal text classification tasks, including but not limited to **semantic analysis, semantic matching, intention recognition and event detection**, allowing you accomplish multiple tasks with a single model. Besides, our method brings good generation performance through multi-task pretraining.

**Highlights:**

- **Comprehensive Coverage**🎓: Covers various mainstream tasks of text classification, including but not limited to semantic analysis, semantic matching, intention recognition and event detection.

- **State-of-the-Art Performance**🏃: Strong performance from the UTC model, which ranks first on [ZeroCLUE](https://www.cluebenchmarks.com/zeroclue.html)/[FewCLUE](https://www.cluebenchmarks.com/fewclue.html) as of 01/11/2023.

- **Easy to use**⚡: Three lines of code to use our Taskflow for out-of-box Zero-shot Text Classification capability. One line of command to model training and model deployment.

- **Efficient Tuning**✊: Developers can easily get started with the data labeling and model training process without a background in Machine Learning.

<a name="2"></a>

## 2. Quick start

For quick start, you can directly use ```paddlenlp.Taskflow``` out-of-the-box, leveraging the zero-shot performance. For production use cases, we recommend labeling a small amount of data for model fine-tuning to further improve the performance.

<a name="21"></a>

### 2.1 Code structure

```shell
.
├── deploy/simple_serving/ # model deployment script
├── utils.py # data processing tools
├── run_train.py # model fine-tuning script
├── run_eval.py # model evaluation script
├── label_studio.py # data format conversion script
├── label_studio_text.md # data annotation instruction
└── README.md
```
<a name="22"></a>

### 2.2 Data labeling

We recommend using [Label Studio](https://labelstud.io/) for data labeling. You can export labeled data in Label Studio and convert them into the required input format. Please refer to [Label Studio Data Labeling Guide](./label_studio_text_en.md) for more details.

Here we provide a pre-labeled example dataset `Medical Question Intent Classification Dataset`, which you can download with the following command. We will show how to use the data conversion script to generate training/validation/test set files for fine-tuning.

Download the medical question intent classification dataset:

```shell
wget https://bj.bcebos.com/paddlenlp/datasets/utc-medical.tar.gz
tar -xvf utc-medical.tar.gz
mv utc-medical data
rm utc-medical.tar.gz
```

Generate training/validation set files:

```shell
python label_studio.py \
--label_studio_file ./data/label_studio.json \
--save_dir ./data \
--splits 0.8 0.1 0.1 \
--options ./data/label.txt
```

For multi-task training, you can convert data with script seperately and move them to the same directory.

<a name="23"></a>

### 2.3 Finetuning

Use the following command to fine-tune the model using `utc-large` as the pre-trained model, and save the fine-tuned model to `./checkpoint/model_best/`:

Single GPU:

```shell
python run_train.py \
--device gpu \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--seed 1000 \
--model_name_or_path utc-large \
--output_dir ./checkpoint/model_best \
--dataset_path ./data/ \
--max_seq_length 512 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 8 \
--num_train_epochs 20 \
--learning_rate 1e-5 \
--do_train \
--do_eval \
--do_export \
--export_model_dir ./checkpoint/model_best \
--overwrite_output_dir \
--disable_tqdm True \
--metric_for_best_model macro_f1 \
--load_best_model_at_end True \
--save_total_limit 1
```

Multiple GPUs:

```shell
python -u -m paddle.distributed.launch --gpus "0,1" run_train.py \
--device gpu \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--seed 1000 \
--model_name_or_path utc-large \
--output_dir ./checkpoint/model_best \
--dataset_path ./data/ \
--max_seq_length 512 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 8 \
--num_train_epochs 20 \
--learning_rate 1e-5 \
--do_train \
--do_eval \
--do_export \
--export_model_dir ./checkpoint/model_best \
--overwrite_output_dir \
--disable_tqdm True \
--metric_for_best_model macro_f1 \
--load_best_model_at_end True \
--save_total_limit 1
```

Parameters:

* `device`: Training device, one of 'cpu' and 'gpu' can be selected; the default is GPU training.
* `logging_steps`: The interval steps of log printing during training, the default is 10.
* `save_steps`: The number of interval steps to save the model checkpoint during training, the default is 100.
* `eval_steps`: The number of interval steps to save the model checkpoint during training, the default is 100.
* `seed`: global random seed, default is 42.
* `model_name_or_path`: The pre-trained model used for few shot training. Defaults to "utc-large".
* `output_dir`: Required, the model directory saved after model training or compression; the default is `None`.
* `dataset_path`: The directory to dataset; defaults to `./data`.
* `train_file`: Training file name; defaults to `train.txt`.
* `dev_file`: Development file name; defaults to `dev.txt`.
* `max_seq_len`: The maximum segmentation length of the text and label candidates. When the input exceeds the maximum length, the input text will be automatically segmented. The default is 512.
* `per_device_train_batch_size`: The batch size of each GPU core/CPU used for training, the default is 8.
* `per_device_eval_batch_size`: Batch size per GPU core/CPU for evaluation, default is 8.
* `num_train_epochs`: Training rounds, 100 can be selected when using early stopping method; the default is 10.
* `learning_rate`: The maximum learning rate for training, UTC recommends setting it to 1e-5; the default value is 3e-5.
* `do_train`: Whether to perform fine-tuning training, setting this parameter means to perform fine-tuning training, and it is not set by default.
* `do_eval`: Whether to evaluate, setting this parameter means to evaluate, the default is not set.
* `do_export`: Whether to export, setting this parameter means to export static graph, and it is not set by default.
* `export_model_dir`: Static map export address, the default is `./checkpoint/model_best`.
* `overwrite_output_dir`: If `True`, overwrite the contents of the output directory. If `output_dir` points to a checkpoint directory, use it to continue training.
* `disable_tqdm`: Whether to use tqdm progress bar.
* `metric_for_best_model`: Optimal model metric, UTC recommends setting it to `macro_f1`, the default is None.
* `load_best_model_at_end`: Whether to load the best model after training, usually used in conjunction with `metric_for_best_model`, the default is False.
* `save_total_limit`: If this parameter is set, the total number of checkpoints will be limited. Remove old checkpoints `output directory`, defaults to None.

<a name="24"></a>

### 2.4 Evaluation

Model evaluation:

```shell
python evaluate.py \
--model_path ./checkpoint/model_best \
--test_path ./data/test.txt \
--per_device_eval_batch_size 2 \
--max_seq_len 512 \
--output_dir ./checkpoint_test
```

Parameters:

- `model_path`: The path of the model folder for evaluation, which must contain the model weight file `model_state.pdparams` and the configuration file `model_config.json`.
- `test_path`: The test set file for evaluation.
- `per_device_eval_batch_size`: Batch size, please adjust it according to the machine situation, the default is 8.
- `max_seq_len`: The maximum segmentation length of the text and label candidates. When the input exceeds the maximum length, the input text will be automatically segmented. The default is 512.

<a name="25"></a>

### 2.5 Inference

You can use `paddlenlp.Taskflow` to load your custom model by specifying the path of the model weight file through `task_path`.

```python
>>> from pprint import pprint
>>> from paddlenlp import Taskflow
>>> schema = ["病情诊断", "治疗方案", "病因分析", "指标解读", "就医建议", "疾病表述", "后果表述", "注意事项", "功效作用", "医疗费用", "其他"]
>>> my_cls = Taskflow("zero_shot_text_classification", schema=schema, task_path='./checkpoint/model_best', precision="fp16")
>>> pprint(my_cls("中性粒细胞比率偏低"))
```

<a name="26"></a>

### 2.6 Deployment

We provide the deployment solution on the foundation of PaddleNLP SimpleServing, where you can easily build your own deployment service with three-line code.

```
# Save at server.py
from paddlenlp import SimpleServer, Taskflow
schema = ["病情诊断", "治疗方案", "病因分析", "指标解读", "就医建议"]
utc = Taskflow("zero_shot_text_classification",
schema=schema,
task_path="../../checkpoint/model_best/",
precision="fp32")
app = SimpleServer()
app.register_taskflow("taskflow/utc", utc)
```

```
# Start the server
paddlenlp server server:app --host 0.0.0.0 --port 8990
```

It supports FP16 (half-precision) and multiple process for inference acceleration.

<a name="27"></a>

### 2.7 Experiments

The results reported here are based on the development set of KUAKE-QIC.

| | Accuracy | Micro F1 | Macro F1 |
| :------: | :--------: | :--------: | :--------: |
| 0-shot | 28.69 | 87.03 | 60.90 |
| 5-shot | 64.75 | 93.34 | 80.33 |
| 10-shot | 65.88 | 93.76 | 81.34 |
| full-set | 81.81 | 96.65 | 89.87 |

where k-shot means that there are k annotated samples per label for training.
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
简体中文 | [English](label_studio_text_en.md)

# 文本分类任务Label Studio使用指南

**目录**
Expand Down Expand Up @@ -105,7 +107,7 @@ label-studio start

将导出的文件重命名为``label_studio.json``后,放入``./data``目录下。通过[label_studio.py](./label_studio.py)脚本可转为UTC的数据格式。

在数据转换阶段,我们会自动构造用于模型训练的标签候选信息。例如在医疗意图分类中,标签候选为``["病情诊断", "治疗方案", "病因分析", "指标解读", "就医建议", "疾病表述", "后果表述", "注意事项", "功效作用", "医疗费用", "其他"]``可通过``options``参数进行配置
在数据转换阶段,还需要提供标签候选信息,放在`./data/label.txt`文件中,每个标签占一行。例如在医疗意图分类中,标签候选为``["病情诊断", "治疗方案", "病因分析", "指标解读", "就医建议", "疾病表述", "后果表述", "注意事项", "功效作用", "医疗费用", "其他"]``也可通过``options``参数直接进行配置

```shell
python label_studio.py \
Expand All @@ -122,7 +124,7 @@ python label_studio.py \
- ``label_studio_file``: 从label studio导出的数据标注文件。
- ``save_dir``: 训练数据的保存目录,默认存储在``data``目录下。
- ``splits``: 划分数据集时训练集、验证集所占的比例。默认为[0.8, 0.1, 0.1]表示按照``8:1:1``的比例将数据划分为训练集、验证集和测试集。
- ``options``: 指定分类任务的类别标签。若输入类型为文件,则文件中每行一个标签。默认为None,自动从输入数据中构造标签候选集合,当数据量大时耗时较长。
- ``options``: 指定分类任务的类别标签。若输入类型为文件,则文件中每行一个标签。
- ``is_shuffle``: 是否对数据集进行随机打散,默认为True。
- ``seed``: 随机种子,默认为1000.

Expand Down
Loading

0 comments on commit c21ebfc

Please sign in to comment.