Skip to content
master
Switch branches/tags
Code
This branch is 38 commits ahead of Alfredvc:master.

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Beating Montezuma's Revenge

We aim to achieve the state-of-the art results on [Montezuma's Revenge](https://github.com/RL-ninja/beating-montezuma/wiki/Montezuma's-Revenge

TODOs & Ideas

See Todos & Ideas

Evaluation Metrics

  • game score:
    • average score > 3500 (of last 10 episodes)
    • max score > 6600
  • number of rooms/level explored:
    • 20+ rooms
    • beat level 1

Resources (papers & implementations)

See Resources

Getting started

Dependencies

If you use Anaconda, you can try conda env create -f environment.yml.

Requirements

  • Python 3.4+
  • TensorFlow 1.0+ (choose a GPU version, if you have GPU)
  • Arcade-Learning-Environment
  • cython (pip3 package)
  • scikit-image (pip3 package)
  • python3-tk
  • opencv (opencv-python)

Training the agent

To train an agent to play, for example, pong run

  • python3 train.py -g <game-name> -df logs/<game-name>/ -algo paac_cts

Visualizing training

  1. Open a new terminal
  2. Attach to the running docker container with docker exec -it CONTAINER_NAME bash
  3. Run tensorboard --logdir=<absolute-path>/paac/logs/tf.
  4. In your browser navigate to localhost:6006/

If running locally, skip step 2.

Testing the agent

To test the performance of a trained agent run python3 test.py -f logs/ -tc 5 Output:

Performed 5 tests for seaquest.
Mean: 1704.00
Min: 1680.00
Max: 1720.00
Std: 14.97

Generating gifs

python3 test.py -f logs/<game-name>/ -gn breakout

This may take a few minutes.

About

Beating Montezuma's Revenge Generally

Resources

License

Releases

No releases published

Packages

No packages published

Languages