Skip to content

RunpeiDong/DreamLLM

Repository files navigation

DreamLLM Logo

Project Page Paper PDF Hugging Face Code License

Introduction

DreamLLM is a learning framework that first achieves versatile Multimodal Large Language Models (MLLMs) empowered with frequently overlooked synergy between multimodal comprehension and creation. DreamLLM operates on two fundamental principles. The first focuses on the generative modeling of both language and image posteriors by direct sampling in the raw multimodal space. Second, DreamLLM fosters the generation of raw, interleaved documents, modeling both text and image contents, along with unstructured layouts. DreamLLM is a zero-shot multimodal generalist capable of both comprehension and creation.

♾️ Omni Framework

We introduce our framework ♾️ Omni to facilitate the Multimodal Large Language Models (MLLM) research. ♾️ Omni can be used for building new MLLMs, such as DreamLLM, supporting rapid and flexible implementation and extension.

Changelog

All major changes are recorded at CHANGELOG.

Installation

We have an easy-to-use installation script, install.sh. Just run the command bash install.sh --help to see the usage.

Usage: install.sh --env_name=ENV_NAME --py_ver=PY_VER --cuda=CUDA --torch_dir=TORCH_DIR
Example: install.sh --env_name=omni --py_ver=3.10 --cuda=118 --torch_dir=/data/torch-2.1.2/
        --env_name: conda environment name, the default name is `omni`
        --py_ver: python version, default version is 3.10
        --cuda: cuda version, used to install Pytorch, the default version is 118
        --torch_dir: directory address containing torch whl, if specified, the cuda version will be ignored
        -h or --help: show help information

Some installation suggestions

  • We recommend creating a new environment for your project. You can specify the --env_name parameter to create a new environment, and the default name is dreamllm.
  • If you have torch whl files, you can specify the --torch_dir parameter to install Pytorch. Otherwise, the script will automatically (from --index-url https://download.pytorch.org/whl/cu$CUDA) download the corresponding Pytorch version according to the --cuda parameter.

Omni Principle for MLLM Architectures

In ♾️ Omni, the multimodal LLMs (MLLMs) are generally viewed as LLMs with other encoder/decoder plugin modules, connected with projectors. For example, DreamLLM consists of two main parts: LLM and the plugin vision encoder and diffusion decoder. ♾️ Omni implements this MLLM by viewing the LLM as the base model, and the vision encoder and SD decoder are implemented as plugin modules.

  • Base: LLM. The LLMs are the base model, which can be different architectures such as Vicuna.
  • Plugin: Multimodal encoder & decoder. The multimodal encoder are models that encode images/3D point clouds or other modalities into visual representations, such as CLIP, SAM, or ReCon++. The vision decoder is the diffusion generative models, such as text-to-images models like Stable Diffusion or SDXL.
  • Connector: Projectors. The projector is used for representation projection to connect the LLM base model with the plugin models. The projector could be linear, MLP, Q-Former, or convolutional neural networks. See omni/models/projector.

Quick Start (How to use?)

Define model files

If we want to create a new project based on llama, say called dreamllm, we first need to define its model file under omni/models/dreamllm.

  • configuration_dreamllm.py inherits from transformers.configuration_utils.PretrainedConfig, and the exact definition can be found in omni/models/dreamllm/configuration_dreamllm.py, where it contains all parameters defined by the model, as well as some parameters that can simplify the writing of training scripts and inference scripts. Please note that we should rewrite model_type = "dreamllm".
  • modeling_dreamllm.py includes the complete model definition for the dreamllm project, where we use DreamLLMDecoderLayer and DreamLLMRMSNorm to build our model.
    • DreamLLMPreTrainedModel inherits from transformers.PreTrainedModel, with the change of config_class=DreamLLMConfig, where DreamLLMConfig is defined in configuration_dreamllm.py.
    • Why do we explicitly define the BaseModelOutputWithPast and CausalLMOutputWithPast? Because we need to add the returned parameters. And additional_log_info can work with Trainer to record extra info to wandb.
    • The model structure is then defined in the DreamLLMModel.__init__ and DreamLLMForCausalLM.__init__ functions, the logic for forward propagation is defined in the DreamLLMModel.forward function, and the logic for calculating the loss is defined in DreamLLMForCausalLM.forward in DreamLLMForCausalLM.forward. You can also modify DreamLLMForCausalLM.from_pretrain to load model pretrained weights more customized.
    • The logic for model saving is in the save_model and _save functions in omni/train/trainer.py. You can modify these two functions to create a more customized saving process.

Define dataset builder

Define the dataset of dreamllm in omni/data/builders/builder_dreamllm.py. You can use omni.data.constants.DataManager to build your project dataset quickly.

All dataset meta information is recorded at omni/data/constants.py

The supported datasets now include:

--------------------------------------------------------------------------------------------------------------------
| Dataset Name                    | Size    | Description                                                          |
|------------------------------------------------------------------------------------------------------------------|
| laion_coco                      | 104.9M  | Captioned 600M images from the english subset of Laion-5B with a ... |
| laion2b_en                      | 2.0B    | Laion 5B project, 2.32 billion of these contain texts in the Eng ... |
| laion400m                       | 270.0M  | The data is complete 400M, considering the packet loss problem m ... |
| blip_laion                      | 65.0M   | 115M images whose shorter edge is larger than 256 pixels from th ... |
| journeydb                       | 2.4M    | 4M high-resolution Midjourney images, but we only download 2M. M ... |
| pokemon-gpt4-captions           | 833     | This dataset is just lambdalabs/pokemon-blip-captions but the ca ... |
| dalle3-by-laion                 | 13.0K   | This dataset consists of prompt and image URL pairs scraped from ... |
| mmc4_core                       | 7.0M    | The interleaved MMC4-core dataset.                               ... |
| obelics                         | 113.0M  | The interleaved Obelics dataset.                                 ... |
| webvid                          | 10.7M   | Large-scale text-video dataset, containing 10 million video-text ... |
| llava_pretrain                  | 558.0K  | 558K unique language-image instruction-following samples for ima ... |
| gqa                             | 13.5M   | GQA dataset.                                                     ... |
| llava_instruct                  | 158.0K  | 158K unique language-image instruction-following samples in tota ... |
| llava_instruct_filter           | 80.0K   | llava_instruct_158K filtered to 80K samples.                     ... |
| llavav1.5_instruct              | 158.0K  | 665K unique language-image instruction-following samples in tota ... |
--------------------------------------------------------------------------------------------------------------------

An example of using DataManager:

from omni.data.constants import DataManager
data = DataManager(
    datasets=["laion2b_en", "journeydb"],
    datasets_init_kwargs={"min_size": 64},
    size_list=["10M", "20M"],
)
sample = data.__getitem__(0)

Define training scripts

The training scripts and config files of each project is defined at an individual folder under projects. For example, DreamLLM is defined as projects/dreamllm.

The training script of DreamLLM is projects/dreamllm/train.py, the definition of a project should be implemented in the following steps:

  • Define your training arguments in the following way:

    from omni.train.training_args import TrainingArguments
    
    @dataclass
    class ModelArguments:
        model_name_or_path: str | None = field(default="lmsys/vicuna-13b-delta-v0")
        vq_model_name_or_path: str | None = field(default="openMUSE/maskgit-vqgan-imagenet-f16-256")
        vision_vocab_size: int | None = field(default=8192)
        model_max_length: int = field(
            default=2048, metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}
        )
        # ...
    
    
    @dataclass
    class DataArguments:
        datasets: list[str] = field(default_factory=list, metadata={"help": "Which datasets are used? (default: [])"})
        datasets_init_kwargs: dict = field(default_factory=dict, metadata={"help": "The init kwargs of datasets."})
        size_list: list[str | int] = field(default_factory=list, metadata={"help": "The size of each dataset."})
        # ...
    
    
    @dataclass
    class Arguments(LazyAguments):
        model: ModelArguments = field(default_factory=ModelArguments)
        data: DataArguments = field(default_factory=DataArguments)
        training: TrainingArguments = field(default_factory=TrainingArguments)
  • Define your training main function:

    def train(config: DataClass, *args, **kwargs):
        # define models
        # set the `requires_grad` status
        # define `data_collator`
        # define `dataset`
    
        # train
        trainer = Trainer(
            model=model,
            args=config.training,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            tokenizer=tokenizer,
        )
        if list(pathlib.Path(config.training.output_dir).glob("checkpoint-*")):
            trainer.train(resume_from_checkpoint=True)
        else:
            trainer.train()
        trainer.save_model(output_dir=config.training.output_dir)
        trainer.save_state()
  • Use LazyLaunch to launch your function, so you can use pyinstrument automatically, or you can start torch.profiler manually.

    if __name__ == "__main__":
        LazyLaunch(train, Arguments)

Define project config files

The configuration system of ♾️ Omni is implemented based on Lazy Configs (See what is lazy configs?).

  • Define the common configuration, such as plugin modules that are shared with different training recipes. For example, define the Stable Diffusion head, Dream embedding, and CLIP vision encoders as follows.
from omni.constants import MODEL_ZOOS
from omni.models.dreamllm.configuration_dreamllm import ConfigAndInitKwargs, create_config_init_kwargs
from omni.models.dreamllm.modeling_plugins import CLIPVisionEmbedding, DreamEmbedding, StableDiffusionHead
stable_diffusion_head_config_init_kwargs = create_config_init_kwargs(
    ConfigAndInitKwargs(
        _class_=StableDiffusionHead,
        _name_="stable_diffusion_head",
        _plugin_type_="head",
        projector_type="linear",
        projector_depth=1,
        diffusion_name_or_path=MODEL_ZOOS["stabilityai/stable-diffusion-2-1-base"],
        pretrained_model_name_or_path=None,
        freeze_vae=True,
        freeze_unet=True,
        freeze_projector=False,
        local_files_only=False,
    )
)
...

Training

If you use LazyLaunch to launch your training function, you can use torchrun to start training scripts, and you must specify the --config_file parameter. If you want to modify the parameters in the config file from cli, you should follow hydra's override rules.

torchrun -m projects.dreamllm.train \
--config_file projects/dreamllm/configs/stage1/base.py \
"training.per_device_train_batch_size=16" \
"training.output_dir='./work_dirs/your_dir/'" \
"training.run_name='wandb_run_name'" \
"training.learning_rate=2e-3"

Meta Information

Dataset Meta Information Registration

All the meta information is defined and saved at omni/data/constants.py. For example, when we try to register the image-text pair dataset blip_laion, the data should be registered as:

from omni.config.lazy import LazyCall as L
from omni.data.datasets.unified_it_pair_webdataset import UnifiedITPairWebdataset
from omni.data.manager.data_registry import DataRegistry
from omni.data.manager.dataset_info import WebDatasetInfo
from omni.data.manager.dataset_type import DatasetType
DATASETS_INFO_TABLE = [
    L(WebDatasetInfo)(
        name="blip_laion",
        description="""115M images whose shorter edge is larger than 256 pixels from the original LAION400M. Then, use CapFilt from BLIP to filter high-quality captions.
        More details: https://github.com/salesforce/BLIP/tree/main#pre-training-datasets-download
        """,
        dataset_type=DatasetType.ImageTextPair,
        cls=UnifiedITPairWebdataset,
        approx_size="65M",
        shard_list_path="path2blip_laion_65m_shard_list.json",
    ),
]
DataManager = DataRegistry("DataManager")
DataManager.register(DATASETS_INFO_TABLE)

Note that when you add a new dataset, you have to define its dataset type, dataloader, and organization style. We have provided some basic support for datasets based on Webdataset and datasets that use JSON files for annotation storage.

Model Information Registration

All the models and other meta information, such as commonly used special tokens definition, are defined at omni/constants.py. To accelerate the usage with pretrained models on your local machine (i.e., local_files_only in Huggingface), please modify this meta information by changing the MODEL_ZOOS.

# set the path according to your local machine
MODEL_ZOOS = {
    "decapoda-research/llama-7b-hf"           : "huggingface_cache/hub/models--decapoda-research--llama-7b-hf/snapshots/5f98eefcc80e437ef68d457ad7bf167c2c6a1348",
    "meta-llama/Llama-2-7b-chat-hf"           : "huggingface_cache/hub/llama2-7b-chat",
    "meta-llama/Llama-2-70b-chat-hf"          : "huggingface_cache/hub/models--meta-llama--Llama-2-70b-hf",
    "lmsys/vicuna-7b-v1.1"                    : "huggingface_cache/hub/llama-vicuna-7b-v1.1",
    "lmsys/vicuna-7b-v1.5"                    : "huggingface_cache/hub/models--lmsys--vicuna-7b-v15",
    "lmsys/vicuna-13b-v1.3"                   : "huggingface_cache/hub/llama-vicuna-13b-v1.3",
    "lmsys/vicuna-33b-v1.3"                   : "huggingface_cache/hub/models--lmsys--vicuna-33b-v1.3",
    "runwayml/stable-diffusion-v1-5"          : "huggingface_cache/hub/models--runwayml--stable-diffusion-v1-5/snapshots/1d0c4ebf6ff58a5caecab40fa1406526bca4b5b9",
    "stabilityai/stable-diffusion-2-1-base"   : "huggingface_cache/hub/models--stabilityai--stable-diffusion-2-1-base/snapshots/dcd3ee64f0c1aba2eb9e0c0c16041c6cae40d780",
    "stabilityai/stable-diffusion-xl-base-1.0": "huggingface_cache/hub/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots/bf714989e22c57ddc1c453bf74dab4521acb81d8",
    "openai/clip-vit-large-patch14"           : "huggingface_cache/hub/models--openai--clip-vit-large-patch14/snapshots/8d052a0f05efbaefbc9e8786ba291cfdf93e5bff",
    ...
}

Evaluation

♾️ Omni supports various kinds of evaluation in omni/eval. Please see Evaluation README for more details.

Citation

If you find our work DreamLLM useful in your research, please consider citing DreamLLM:

@inproceedings{dong2024dreamllm,
  title={Dream{LLM}: Synergistic Multimodal Comprehension and Creation},
  author={Runpei Dong and Chunrui Han and Yuang Peng and Zekun Qi and Zheng Ge and Jinrong Yang and Liang Zhao and Jianjian Sun and Hongyu Zhou and Haoran Wei and Xiangwen Kong and Xiangyu Zhang and Kaisheng Ma and Li Yi},
  booktitle={The Twelfth International Conference on Learning Representations},
  year={2024},
  url={https://openreview.net/forum?id=y01KGvd9Bw}
}

If you find ♾️ Omni helpful for your research, please consider citing:

@Misc{dong2024omni,
  author={Runpei Dong and Chunrui Han and Yuang Peng and Zekun Qi and Zheng Ge and Jinrong Yang and Liang Zhao and Jianjian Sun and Hongyu Zhou and Haoran Wei and Xiangwen Kong and Xiangyu Zhang and Kaisheng Ma and Li Yi},
  title =        {Omni: A Unified Framework for Multimodal Large Language Models},
  howpublished = {\url{https://github.com/RunpeiDong/DreamLLM}},
  year =         {2024}
}

About

[ICLR 2024 Spotlight] DreamLLM: Synergistic Multimodal Comprehension and Creation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published