Skip to content
Robotic Operating System (ROS) publisher and service for the OmniPreSense short range radar (originally OPS241-A) ECL-2.0
C C++ CMake Shell
Branch: master
Clone or download

Latest commit

Fetching latest commit…
Cannot retrieve the latest commit at this time.

Files

Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
launch
lib finalize removal of rapidjson Sep 10, 2018
msg Support range as well as speed Feb 26, 2020
src Support range as well as speed Feb 26, 2020
srv
udev
.gitignore added rapidjson, which has all needed header files May 29, 2018
.gitmodules
CHANGELOG.rst
CMakeLists.txt
LICENSE
README.md
package.xml

README.md

radar_omnipresense, a package for ROS

A Robotic Operating System (ROS) publisher and service for the OmniPreSense short range radar.

Package Dependencies

You will need to download and install:

in order to successfully build the package with the ROS development tools.

In order to run (and build) this package, a system has to have the at least the ROS-base package.

You can test if you have ROS installed correctly by attempting to run roscore, a required program for all subsequent examples. If roscore is already running, it is safe to run roscore again and ignore any warnings about it already running.

roscore

Running the package with roslaunch

To run the package you will need to ensure that you have at least one OmniPreSense short range radar device plugged into your USB port(s). Once this is done, use the roslaunch command in a shell terminal. To do so, enter the following command. Note: (This was developed on the Lunar release of ROS on a Linux machine, and tested with the ROS Kinetic release on Raspberry Pis running Ubuntu. We recommend installing the ROS Kinetic release or later on a Linux machine.)

roslaunch radar_omnipresense single_radar.launch

or, if you have multiple radar modules, edit launch/multi_radar.launch as required and enter

roslaunch radar_omnipresense multi_radar.launch

This will run the package on the topics as declared in the .launch file you specified. (For example, "radar_1")

Note: roslaunch stays running. You will need to have another shell open to enter other commands while the radar_omnipresense node is running. The unix utility "screen" is a very valuable utility if you are accessing the ROS linux instance over ssh, or more generally do not have the ability to have multiple terminals.

To view these topics please type the following command into a terminal.

rostopic echo /radar_report

The above comman will for if you are specifically using the single_radar.launch file. If you are using the multi_radar. launch file, use the following commands.

rostopic echo /radar_1/radar_report

Then, if running a second radar module, in another terminal please type the following command to view the topic that the second radar is publishing to.

rostopic echo /radar_2/radar_report

Note: If you only have one radar device but use the multi_radar.launch file, the roslaunch command will still work, but you will see "error 2 opening /dev/ttyACM#", and # will be the port the device is connected to. The one radar will still publish data to the topic and the associated service can still be used.

Running the ROS service to activate and deactivate FFT output

By default, the OmniPreSense radar sensor reports the speed of the most interesting target (which refers to the strongest bounced signal). If you would like for the radar devices to output the FFT data, utilize a "ROS service call" to the module, after you have executed the previous commands listed above. We recommend the following commands be typed into a new terminal.

rosservice call /radar_1/send_api_command "command: 'OF'"

This will enable FFT data to be sent from the radar device. You can see the data published to the topic by the command

rostopic echo /radar_1/radar_report

If running more than one sensor, substitute _1 with the appropriate number for each additional sensor when issuing more commands.

You can’t perform that action at this time.