Skip to content

Latest commit

 

History

History
78 lines (60 loc) · 2.99 KB

cdf-sdfct.md

File metadata and controls

78 lines (60 loc) · 2.99 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2020-11-05 20:12:00 -0800
Cumulative distribution function of a strictly decreasing function of a random variable
General Theorems
Probability theory
Cumulative distribution function
Cumulative distribution function of strictly decreasing function
authors year title in pages url
Taboga, Marco
2017
Functions of random variables and their distribution
Lectures on probability and mathematical statistics
retrieved on 2020-11-06
P186
cdf-sdfct
JoramSoch

Theorem: Let $X$ be a random variable with possible outcomes $\mathcal{X}$ and let $g(x)$ be a strictly decreasing function on the support of $X$. Then, the cumulative distribution function of $Y = g(X)$ is given by

$$ \label{eq:cdf-sdfct} F_Y(y) = \left{ \begin{array}{rl} 1 ; , & \text{if} ; y > \mathrm{max}(\mathcal{Y}) \\ 1 - F_X(g^{-1}(y)) + \mathrm{Pr}(X = g^{-1}(y)) ; , & \text{if} ; y \in \mathcal{Y} \\ 0 ; , & \text{if} ; y < \mathrm{min}(\mathcal{Y}) \end{array} \right. $$

where $g^{-1}(y)$ is the inverse function of $g(x)$ and $\mathcal{Y}$ is the set of possible outcomes of $Y$:

$$ \label{eq:Y-range} \mathcal{Y} = \left\lbrace y = g(x): x \in \mathcal{X} \right\rbrace ; . $$

Proof: The support of $Y$ is determined by $g(x)$ and by the set of possible outcomes of $X$. Moreover, if $g(x)$ is strictly decreasing, then $g^{-1}(y)$ is also strictly decreasing. Therefore, the cumulative distribution function of $Y$ can be derived as follows:

  1. If $y$ is higher than the highest value $Y$ can take, then $\mathrm{Pr}(Y \leq y) = 1$, so

$$ \label{eq:cdf-sdfct-p1} F_Y(y) = 1, \quad \text{if} \quad y > \mathrm{max}(\mathcal{Y}) ; . $$

  1. If $y$ belongs to the support of $Y$, then $F_Y(y)$ can be derived as follows:

$$ \label{eq:cdf-sdfct-p2} \begin{split} F_Y(y) &= \mathrm{Pr}(Y \leq y) \\ &= 1 - \mathrm{Pr}(Y > y) \\ &= 1 - \mathrm{Pr}(g(X) > y) \\ &= 1 - \mathrm{Pr}(X < g^{-1}(y)) \\ &= 1 - \mathrm{Pr}(X < g^{-1}(y)) - \mathrm{Pr}(X = g^{-1}(y)) + \mathrm{Pr}(X = g^{-1}(y)) \\ &= 1 - \left[ \mathrm{Pr}(X < g^{-1}(y)) + \mathrm{Pr}(X = g^{-1}(y)) \right] + \mathrm{Pr}(X = g^{-1}(y)) \\ &= 1 - \mathrm{Pr}(X \leq g^{-1}(y)) + \mathrm{Pr}(X = g^{-1}(y)) \\ &= 1 - F_X(g^{-1}(y)) + \mathrm{Pr}(X = g^{-1}(y)) ; . \end{split} $$

  1. If $y$ is lower than the lowest value $Y$ can take, then $\mathrm{Pr}(Y \leq y) = 0$, so

$$ \label{eq:cdf-sdfct-p3} F_Y(y) = 0, \quad \text{if} \quad y < \mathrm{min}(\mathcal{Y}) ; . $$

Taking together \eqref{eq:cdf-sdfct-p1}, \eqref{eq:cdf-sdfct-p2}, \eqref{eq:cdf-sdfct-p3}, eventually proves \eqref{eq:cdf-sdfct}.