Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enabling python BCF to use different subsets of features in the mu and tau forests #59

Merged
merged 2 commits into from
Jun 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,6 @@ preprocessPredictionData <- function(input_data, metadata) {
#' Returns a list including a matrix of preprocessed covariate values and associated tracking.
#'
#' @param input_matrix Covariate matrix.
#' @param variable_weights Numeric weights reflecting the relative probability of splitting on each variable
#'
#' @return List with preprocessed (unmodified) data and details on the number of each type
#' of variable, unique categories associated with categorical variables, and the
Expand Down Expand Up @@ -142,7 +141,6 @@ preprocessPredictionMatrix <- function(input_matrix, metadata) {
#'
#' @param input_df Dataframe of covariates. Users must pre-process any
#' categorical variables as factors (ordered for ordered categorical).
#' @param variable_weights Numeric weights reflecting the relative probability of splitting on each variable
#'
#' @return List with preprocessed data and details on the number of each type
#' of variable, unique categories associated with categorical variables, and the
Expand Down
302 changes: 302 additions & 0 deletions demo/notebooks/causal_inference_feature_subsets.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,302 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Causal Inference with Feature Subsets Demo Notebook\n",
"\n",
"This is a duplicate of the main causal inference demo which shows how a user might decide to use only a subset of covariates in the treatment effect forest. \n",
"Why might we want to do that? Well, in many cases it is plausible that some covariates (for example age, income, etc...) influence the outcome of interest \n",
"in a causal problem, but do not **moderate** the treatment effect. In this case, we'd need to include these variables in the prognostic forest for deconfounding \n",
"but we don't necessarily need to include them in the treatment effect forest."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load necessary libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from stochtree import BCFModel\n",
"from sklearn.model_selection import train_test_split"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generate sample data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# RNG\n",
"rng = np.random.default_rng()\n",
"\n",
"# Generate covariates and basis\n",
"n = 1000\n",
"p_X = 10\n",
"X = rng.uniform(0, 1, (n, p_X))\n",
"pi_X = 0.25 + 0.5*X[:,0]\n",
"Z = rng.binomial(1, pi_X, n).astype(float)\n",
"\n",
"# Define the outcome mean functions (prognostic and treatment effects)\n",
"mu_X = pi_X*5 + 2*X[:,2]\n",
"tau_X = 1 - 2*X[:,0] + 2*X[:,1] + 1*X[:,0]*X[:,1]\n",
"\n",
"# Generate outcome\n",
"epsilon = rng.normal(0, 1, n)\n",
"y = mu_X + tau_X*Z + epsilon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Test-train split"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sample_inds = np.arange(n)\n",
"train_inds, test_inds = train_test_split(sample_inds, test_size=0.5)\n",
"X_train = X[train_inds,:]\n",
"X_test = X[test_inds,:]\n",
"Z_train = Z[train_inds]\n",
"Z_test = Z[test_inds]\n",
"y_train = y[train_inds]\n",
"y_test = y[test_inds]\n",
"pi_train = pi_X[train_inds]\n",
"pi_test = pi_X[test_inds]\n",
"mu_train = mu_X[train_inds]\n",
"mu_test = mu_X[test_inds]\n",
"tau_train = tau_X[train_inds]\n",
"tau_test = tau_X[test_inds]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run BCF without feature subsetting for $\\tau(X)$"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"bcf_model = BCFModel()\n",
"bcf_model.sample(X_train, Z_train, y_train, pi_train, X_test, Z_test, pi_test, num_gfr=10, num_mcmc=100)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Inspect the MCMC (BART) samples"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"forest_preds_y_mcmc = bcf_model.y_hat_test\n",
"y_avg_mcmc = np.squeeze(forest_preds_y_mcmc).mean(axis = 1, keepdims = True)\n",
"y_df_mcmc = pd.DataFrame(np.concatenate((np.expand_dims(y_test,1), y_avg_mcmc), axis = 1), columns=[\"True outcome\", \"Average estimated outcome\"])\n",
"sns.scatterplot(data=y_df_mcmc, x=\"Average estimated outcome\", y=\"True outcome\")\n",
"plt.axline((0, 0), slope=1, color=\"black\", linestyle=(0, (3,3)))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"forest_preds_tau_mcmc = bcf_model.tau_hat_test\n",
"tau_avg_mcmc = np.squeeze(forest_preds_tau_mcmc).mean(axis = 1, keepdims = True)\n",
"tau_df_mcmc = pd.DataFrame(np.concatenate((np.expand_dims(tau_test,1), tau_avg_mcmc), axis = 1), columns=[\"True tau\", \"Average estimated tau\"])\n",
"sns.scatterplot(data=tau_df_mcmc, x=\"True tau\", y=\"Average estimated tau\")\n",
"plt.axline((0, 0), slope=1, color=\"black\", linestyle=(0, (3,3)))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"forest_preds_mu_mcmc = bcf_model.mu_hat_test\n",
"mu_avg_mcmc = np.squeeze(forest_preds_mu_mcmc).mean(axis = 1, keepdims = True)\n",
"mu_df_mcmc = pd.DataFrame(np.concatenate((np.expand_dims(mu_test,1), mu_avg_mcmc), axis = 1), columns=[\"True mu\", \"Average estimated mu\"])\n",
"sns.scatterplot(data=mu_df_mcmc, x=\"True mu\", y=\"Average estimated mu\")\n",
"plt.axline((0, 0), slope=1, color=\"black\", linestyle=(0, (3,3)))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sigma_df_mcmc = pd.DataFrame(np.concatenate((np.expand_dims(np.arange(bcf_model.num_samples - bcf_model.num_gfr),axis=1), np.expand_dims(bcf_model.global_var_samples[bcf_model.num_gfr:],axis=1)), axis = 1), columns=[\"Sample\", \"Sigma\"])\n",
"sns.scatterplot(data=sigma_df_mcmc, x=\"Sample\", y=\"Sigma\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b_df_mcmc = pd.DataFrame(np.concatenate((np.expand_dims(np.arange(bcf_model.num_samples - bcf_model.num_gfr),axis=1), np.expand_dims(bcf_model.b0_samples[bcf_model.num_gfr:],axis=1), np.expand_dims(bcf_model.b1_samples[bcf_model.num_gfr:],axis=1)), axis = 1), columns=[\"Sample\", \"Beta_0\", \"Beta_1\"])\n",
"sns.scatterplot(data=b_df_mcmc, x=\"Sample\", y=\"Beta_0\")\n",
"sns.scatterplot(data=b_df_mcmc, x=\"Sample\", y=\"Beta_1\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run BCF, subsetting to the two features that show up in $\\tau(X)$"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"bcf_model_subset = BCFModel()\n",
"bcf_model_subset.sample(X_train, Z_train, y_train, pi_train, X_test, Z_test, pi_test, num_gfr=10, num_mcmc=100, keep_vars_tau=[0,1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Inspect the MCMC (BART) samples"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"forest_preds_y_mcmc = bcf_model_subset.y_hat_test\n",
"y_avg_mcmc = np.squeeze(forest_preds_y_mcmc).mean(axis = 1, keepdims = True)\n",
"y_df_mcmc = pd.DataFrame(np.concatenate((np.expand_dims(y_test,1), y_avg_mcmc), axis = 1), columns=[\"True outcome\", \"Average estimated outcome\"])\n",
"sns.scatterplot(data=y_df_mcmc, x=\"Average estimated outcome\", y=\"True outcome\")\n",
"plt.axline((0, 0), slope=1, color=\"black\", linestyle=(0, (3,3)))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"forest_preds_tau_mcmc = bcf_model_subset.tau_hat_test\n",
"tau_avg_mcmc = np.squeeze(forest_preds_tau_mcmc).mean(axis = 1, keepdims = True)\n",
"tau_df_mcmc = pd.DataFrame(np.concatenate((np.expand_dims(tau_test,1), tau_avg_mcmc), axis = 1), columns=[\"True tau\", \"Average estimated tau\"])\n",
"sns.scatterplot(data=tau_df_mcmc, x=\"True tau\", y=\"Average estimated tau\")\n",
"plt.axline((0, 0), slope=1, color=\"black\", linestyle=(0, (3,3)))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"forest_preds_mu_mcmc = bcf_model_subset.mu_hat_test\n",
"mu_avg_mcmc = np.squeeze(forest_preds_mu_mcmc).mean(axis = 1, keepdims = True)\n",
"mu_df_mcmc = pd.DataFrame(np.concatenate((np.expand_dims(mu_test,1), mu_avg_mcmc), axis = 1), columns=[\"True mu\", \"Average estimated mu\"])\n",
"sns.scatterplot(data=mu_df_mcmc, x=\"True mu\", y=\"Average estimated mu\")\n",
"plt.axline((0, 0), slope=1, color=\"black\", linestyle=(0, (3,3)))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sigma_df_mcmc = pd.DataFrame(np.concatenate((np.expand_dims(np.arange(bcf_model_subset.num_samples - bcf_model_subset.num_gfr),axis=1), \n",
" np.expand_dims(bcf_model_subset.global_var_samples[bcf_model_subset.num_gfr:],axis=1)), axis = 1), \n",
" columns=[\"Sample\", \"Sigma\"])\n",
"sns.scatterplot(data=sigma_df_mcmc, x=\"Sample\", y=\"Sigma\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b_df_mcmc = pd.DataFrame(np.concatenate((np.expand_dims(np.arange(bcf_model_subset.num_samples - bcf_model_subset.num_gfr),axis=1), \n",
" np.expand_dims(bcf_model_subset.b0_samples[bcf_model_subset.num_gfr:],axis=1), \n",
" np.expand_dims(bcf_model_subset.b1_samples[bcf_model_subset.num_gfr:],axis=1)), axis = 1), \n",
" columns=[\"Sample\", \"Beta_0\", \"Beta_1\"])\n",
"sns.scatterplot(data=b_df_mcmc, x=\"Sample\", y=\"Beta_0\")\n",
"sns.scatterplot(data=b_df_mcmc, x=\"Sample\", y=\"Beta_1\")\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "stochtree-dev",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
24 changes: 6 additions & 18 deletions include/stochtree/tree_sampler.h
Original file line number Diff line number Diff line change
Expand Up @@ -113,15 +113,9 @@ static inline bool NodeNonConstant(ForestDataset& dataset, ForestTracker& tracke

static inline void AddSplitToModel(ForestTracker& tracker, ForestDataset& dataset, TreePrior& tree_prior, TreeSplit& split, std::mt19937& gen, Tree* tree, int tree_num, int leaf_node, int feature_split, bool keep_sorted = false) {
// Use zeros as a "temporary" leaf values since we draw leaf parameters after tree sampling is complete
int basis_dim = dataset.NumBasis();
if (dataset.HasBasis()) {
if (basis_dim > 1) {
std::vector<double> temp_leaf_values(basis_dim, 0.);
tree->ExpandNode(leaf_node, feature_split, split, temp_leaf_values, temp_leaf_values);
} else {
double temp_leaf_value = 0.;
tree->ExpandNode(leaf_node, feature_split, split, temp_leaf_value, temp_leaf_value);
}
if (tree->OutputDimension() > 1) {
std::vector<double> temp_leaf_values(tree->OutputDimension(), 0.);
tree->ExpandNode(leaf_node, feature_split, split, temp_leaf_values, temp_leaf_values);
} else {
double temp_leaf_value = 0.;
tree->ExpandNode(leaf_node, feature_split, split, temp_leaf_value, temp_leaf_value);
Expand All @@ -135,15 +129,9 @@ static inline void AddSplitToModel(ForestTracker& tracker, ForestDataset& datase

static inline void RemoveSplitFromModel(ForestTracker& tracker, ForestDataset& dataset, TreePrior& tree_prior, std::mt19937& gen, Tree* tree, int tree_num, int leaf_node, int left_node, int right_node, bool keep_sorted = false) {
// Use zeros as a "temporary" leaf values since we draw leaf parameters after tree sampling is complete
int basis_dim = dataset.NumBasis();
if (dataset.HasBasis()) {
if (basis_dim > 1) {
std::vector<double> temp_leaf_values(basis_dim, 0.);
tree->CollapseToLeaf(leaf_node, temp_leaf_values);
} else {
double temp_leaf_value = 0.;
tree->CollapseToLeaf(leaf_node, temp_leaf_value);
}
if (tree->OutputDimension() > 1) {
std::vector<double> temp_leaf_values(tree->OutputDimension(), 0.);
tree->CollapseToLeaf(leaf_node, temp_leaf_values);
} else {
double temp_leaf_value = 0.;
tree->CollapseToLeaf(leaf_node, temp_leaf_value);
Expand Down
Loading
Loading